General Capabilities  

-    Full 3D
-    Time-accurate (unsteady) solutions
-    Mixed Eulerian-Lagrangian algorithm
-    Incompressible flow (including low subsonic flows)
-    Inviscid flows
-    Transitional flows
-    Turbulent flows – no (a-priori) turbulence modeling
    required
-    Reynolds-number accurate flows
-    Only standard surface mesh is required to describe
    solid boundaries
-    No need in dynamic meshes for moving rigid
    bodies
-    Acoustics analogy for prediction of flow-induced
    noise
-    Heat transfer including forced, natural, and mixed
    convection
-    Lagrangian trajectory calculation for dispersed
    phase (particles)
-    Volumetric sources of mass, momentum, and heat
-    Extensive customization capability via user-defined
    functions
-    Material property data base

Mesh Capabilities

-    Unstructured surface mesh only is required to
    describe solid boundaries. The software creates
    a prismatic thin layer that grows out normal to the
    surface.

Numerical Method

-    A unique, mixed Eulerian-Lagrangian solver
-    Finite volume method based on unstructured
    meshes used on thin surface layer
-    Lagrangian tracking of vorticity-carrying particles
    everywhere in the flow field
-    Unique, parallel, adaptive Fast Multipole Solver (FMM)
-    Dynamic memory allocation
-    Single and double precision executables
-    Pressure field computed on solid boundaries as an
    option
-    Transitional and turbulent flows are captured
    automatically – no extra modeling required

Lagrangian dispersed phase modeling

-    Trajectory calculation for particles
-    Momentum, heat, and mass transfer coupling with
    fluid
-    Multiple choice of built-in drag laws for spherical
    particles
-    Built-in options to include added mass, Saffman lift,
    and Brownian forces
-    Particle size distribution through linear distribution
    or Rosin-Rammler equation
-    Multiple choice of boundary conditions for particles,
    including reflection, deposition, etc.
-    Turbulent dispersion via discrete random-walk
    model
-    Heat transfer between fluid and dispersed phase,
    including convection and radiation effects

Acoustics Modeling

Boundary conditions

-    Multiple flow inlets/exits, with specifications of:
-    Velocity or mass flux inlet
-    Inlet fluid temperature
-    Inlet turbulent flow profile
-    Periodic boundary conditions

All Rights Reserved to VORCAT.COM | Powered by PLAZA MARQUEE