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Abstract

By their grid-free character, vortex methods repre-
sent a natural complement to Lagrangian particle
methods for the solution of two-phase particulate
flows. With modern fast schemes for evaluating ve-
locities from large collections of vortex elements, it
becomes practical to treat three-dimensional turbu-
lent, two-phase flows through grid-free technology.
This paper describes an application of the VorCat
implementation of the vortex method to the study
of particulate dispersion in a spatially developing
mixing layer. Some details of the computed vortex
structure are described including the development
of streamwise counter-rotating vortices in the braid
regions, their effect upon spanwise rollers and the
breakdown of the flow into turbulence. Particle dis-
persion in the mixing layer flow is examined includ-
ing the effects of streamwise vorticity and two-way
coupling between phases.

Introduction

Lagrangian schemes for simulating high Reynolds
number two-phase particulate flows [5, 21] can pro-
vide a relatively natural representation of scalar
mixing (e.g., free of the distortions associated with
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grid-based numerical diffusion) so long as the under-
lying computation of the turbulent flow field cap-
tures the rotational motions most associated with
turbulent mixing. Grid-free vortex methods [18],
in which the dynamics of the flow are represented
through freely convecting and interacting vortical
elements, are particularly well poised to supply in-
formation about the vortical eddies of turbulence
including internal shear layers and other sharp in-
terfaces that would otherwise be smoothed in grid-
based methods. Consequently, there is considerable
incentive for developing predictive methods combin-
ing grid-free vortex methods with particle represen-
tations of scalar fields. The focus of this paper is
in describing some recent work in which the Vor-
Cat implementation of the three-dimensional vortex
method [2] is applied to the grid-free analysis of two-
phase particulate flows.

In view of its importance in numerous techno-
logical applications, the spatially developing planar
mixing layer is used as a test bed to explore the
capabilities of the grid-free technology. Numerous
experimental studies (e.g., [11, 12, 14]) have been
devoted to describing the vortical structures of the
mixing layer including spanwise rollers, their growth
and merger, the formation of braid regions and their
role in creating streamwise vortex pairs that stretch
and interact with the rest of the vortex system. Vor-
tices in the mixing layer can have a significant af-
fect on particle dispersion [8, 13], and may them-
selves be modified when the particle loadings are
large enough.

A considerable amount of numerical work has
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also contributed to understanding two-phase parti-
cle flow in mixing layers. Until recently (e.g. [6])
these have tended not to consider the spatially grow-
ing mixing layers that are considered in experimen-
tal studies, but rather idealizations that are more
amenable to numerical treatment. In particular, 2D
spatially and temporally growing mixing layers have
been extensively computed [3, 9, 17, 22, 23, 24] as
has temporally developing 3D mixing layer [1, 10,
15, 16, 19]. The former lack streamwise vortices,
while the latter cannot fully model features associ-
ated with the spatial development, such as preferen-
tial dispersion to the slow side [9].

In the case of vortex methods, simulations have
tended to be limited to the spatially growing 2D case
[3, 17, 22, 23], or the transient 3D flow [1, 10] due
to the impracticality of tracking enough elements to
give a credible representation of the spatially devel-
oping 3D mixing layer. Recent work on these flows
have been mainly done using grid-based methods.
For example, Druzhinin and Elghobashi [6] apply
such a scheme to modeling a relatively low Reynolds
number mixing layer in which a two-fluid model is
used to account for scalar dispersion including two-
way coupling.

The introduction of such schemes as the Fast
Multipole Method (FMM) [7] as a means of reduc-
ing the cost of velocity evaluations in vortex meth-
ods has greatly expanded their potential in the mod-
eling of complex turbulent flows. Thus, instead of
elements counted in the thousands, resolution in the
millions becomes practical. In the case of the mixing
layer, it is then possible to make credible simulations
of the three-dimensional spatially growing turbulent
mixing layer including solid particles both with and
without two-way coupling between phases.

This paper presents a selection of results from
a numerical simulation of the spatially developing
mixing layer using the VorCat code − a commercial
implementation of the vortex method specifically de-
signed for the treatment of large scale, complex, tur-
bulent engineering flows. The simulations reproduce
many aspects of the vortex structure of mixing lay-
ers as seen in physical experiments and suggested
by previous calculations of the 3D temporal case.
The representation of the flow in terms of vortex el-
ements also contributes to revealing new features of
the spatially developing vortex field. The computa-
tions give new insights into the dispersion of solid
particles including the effect of Stokes number and
two-way coupling.

The next section describes some aspects of the
numerical method, followed by discussions of how

the mixing layer is modeled, the technique for mod-
eling particle motions, two-way coupling and results
for the mixing layer flow including particle disper-
sion.

Numerical Method

In the VorCat code the primary computational el-
ements are vortex tubes. Accompanying these are
several thin layers of fixed triangular vortex sheets
adjacent to solid boundaries. The sheets are de-
signed to capture severe vorticity gradients in the
near-wall region that control the generation of vor-
ticity in the flow field. In the present work there
are no solid boundaries within the computational
domain, so this aspect of the methodology is not
employed.

An incentive for the use of vortex tubes, as
against, for example, blob-like elements [18], is their
stability in the face of vortex stretching. Thus ac-
cording to Kelvin’s theorem, the circulation of tubes
is constant in high Reynolds number flow so the pos-
sibility of unbounded circulation, which can often
occur in blob methods, is avoided.

Vortex tubes in the computation are straight-
line segments whose ends are convected with the lo-
cal fluid velocity thus leading to stretching and re-
orientation of the vorticity. Tubes that lengthen be-
yond a threshold are subdivided, so that the compu-
tational elements form filaments made up of chains
of straight vortex elements. The allowable lengths of
the tube segments establishes the finest scales that
can be resolved in the flow. In this way the method-
ology may be thought of as a grid-free large eddy
simulation (LES) technique. Sub-grid motions that
are prevented from occurring entail (presumably)
stretching and folding of vortex tubes as they take
energy to small dissipation scales. Chorin’s [4] hair-
pin removal and reconnection algorithms, in which
folded hairpin vortices are removed, model the loss
of local energy, and act as a de facto sub-grid stress
model.

Summing over the individual contributions of N
vortex tubes gives the velocity field U at a point x
and time t as

U(x, t) = − 1
4π

N∑
i=1

ri × si

| ri |3 Γi φ(ri/σ),

where ri = x−xi, ri =| ri |, xi = (x1
i +x2

i )/2 is the
midpoint of the tube with end points x1

i and x2
i and

si ≡ x2
i − x1

i is an axial vector along the ith tube.
In keeping with the practice of desingularizing the
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Biot-Savart law [18] the smoothing function

φ(ri/σ) = 1 −
(

1 − 3
2
(ri/σ)3

)
e−(ri/σ)3

appears in the velocity formula, where σ is a smooth-
ing parameter. The effect of φ is confined to the re-
gion ri < 2.34 σ since φ is unity beyond this point.

To advance the solution in time it is necessary to
evaluate the velocity field over the set of end points
of the tubes. This is done efficiently using a parallel
implementation of the Fast Multipole Method [7].
In this scheme the tube elements are sorted using
an oct-tree whose leaf nodes ideally contain approx-
imately 100 elements. Adjacent boxes contribute to
each other via the exact formula while boxes that
are more distant are linked via the multipole ap-
proximation. Because of the need for smoothing, σ
controls the smallest allowable box in the oct-tree, so
some boxes may have more than an optimal number
of elements. To maintain the speed of the overall
calculation, a “middleman” scheme is adopted for
the local calculations. In this, velocities are evalu-
ated at the corner nodes of the local boxes and 3D
linear interpolation used to get the local velocities.
Since the latter are smooth this procedure is very
accurate.

Particles

Scalar mixing problems involving massless particles
are readily solved with the use of tracers that con-
vect with the fluid and take a random walk to simu-
late molecular diffusion. More challenging is predict-
ing the behavior of massed particles whose motion
obeys a governing dynamical equation depending on
particle size and shape, and local flow properties. If
the particle loading is sufficiently small the veloc-
ity of the carrier fluid will not be affected by the
presence of particles. More generally, however, it is
possible to have two-way coupling between the fluid
and particulate phases, where the presence of solid
particles creates an apparent stress affecting the mo-
tion of the fluid phase. This is likely to be significant
not only when flows with large densities of contami-
nants are present, but even in nominally dilute flows
where particles are able to collect in large concentra-
tions due to the organizing effect of flow structures
[20].

Following the approach commonly used in other
studies [3] the present effort is concerned with the
dispersion of small solid spherical particles in the
mixing layer under conditions in which collisions can
be neglected. It is assumed that the motion of the

ith particle is only affected by its drag force Fi so
the governing dynamical equation (after scaling) is

d2Xi

dt2
= Fi =

1
St

(1 + R2/3
e /6)(U(Xi, t) − Vi)

where St is the Stokes number, the Reynolds number
Re =| U(Xi, t)−Vi | dp/ν, dp is the diameter of the
particles and Vi = dXi/dt is the velocity of the ith
particle.

In the case of one-way coupling between phases
the local force felt on the fluid from the presence of
particles, namely −Fi, is insufficient to cause signif-
icant change in the local velocity field. For two-way
coupling the sum total of the particle forces in a
given volume, say F, becomes large enough to have
a noticeable affect. In the context of the vortic-
ity equation, the presence of particles is felt as the
source term −∇× F. In keeping with the idea that
the particles computed in the simulation are repre-
sentative of many other particles whose motion is
not explicitly computed, and the fact that the ve-
locity field is a LES, then the affect of particles on
the vorticity should be considered in a local average
sense. Thus, it is assumed that the effect of particles
on the flow is by generating vorticity given by eval-
uating −∇ × F on a collection of nearby particles.
In the code, an oct-tree is grown based on the po-
sitions of particles, typically so that 4 particles are
in a box. Forces at the box corners are assessed by
volume weighting the contributions from particles
in adjacent boxes. Then, the average contribution
to vorticity generation is determined by numerically
evaluating the last integral in

∇× F ≈ 1
V

∫
V

(∇× F)dV =
1
V

∫
A

(n × F)dA

which is derived using a standard vector identity.
This procedure is a 3D analogue of the 2D approach
taken in [23]. ∇ × F can affect the flow either by
changing the vorticity of pre-existing tubes or by
adding new vortices to the calculation. Here the
latter route is followed in the interest of simplicity.

Mixing Layer

The flow to be computed here is a planar mixing
layer with velocity Ut = 1 in the top layer (af-
ter scaling) and velocity Ub = 4/13 in the bottom
layer. The streamwise extent of the computational
domain is the interval 0 ≤ x ≤ 3 with vortex tubes
being placed into the flow at each time step with
strength Γ = (1−U2

b )dt/2 where dt is the time step.
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The spanwise extent of the computational region is
−0.5 ≤ z ≤ 0.5. This distance is subdivided into
10 equal segments for the purpose of putting new
vortex tubes into the flow. Some calculations were
done with 20 vortices across the span, thus effec-
tively reducing the scale, but this did not substan-
tially change the results. Periodicity is imposed in
the spanwise direction. To enforce this condition in
the context of the Biot-Savart law it is necessary to
include the contributions of vortices in a number of
image regions to either side of the main test section.
In this study six images to each side are employed so
that the velocity in the main section is determined
from vortices lying in −6.5 ≤ z ≤ 6.5. The com-
putation is made manageable using the translation
properties of the FMM solver.

Accompanying the velocity field produced by
vortices is a potential flow used to enforce the
boundary conditions. In the present case this con-
sists of forcing the total velocity to asymptote to
Ut above the mixing layer and Ub below it. For
this purpose semi-infinite vortex sheets are placed
in the regions to either side of the test section, (i.e.
−∞ < x ≤ 0 and 3 ≤ x ≤ ∞ with strengths/unit
distance Ut − Ub). Calculations are initiated with
N = 36, 700 vortex tubes lying across the gap be-
tween sheets. Each of these tubes has strength
(Ut −Ub)∆x where ∆x = 3/N . At each time step, a
new vortex tube is introduced at x = 0. Those tubes
that convect beyond x = 3.1 are removed from the
flow. In a typical calculation the number of tubes
increases to an equilibrium value after a period of
rapid growth during transition to turbulence. For
the results shown here approximately 370,000 vor-
tex tubes are in the main test section so the total
number of tubes taking into account the images is
approximately 4.81 million.

Results

Structure of the Mixing Layer

The spanwise vortex tubes covering the compu-
tational region at startup evolve like a temporally
growing mixing layer as they convect out of the do-
main. They go through a Kelvin-Helmholtz instabil-
ity including vortex roll-up and pairing, followed by
generation of streamwise vortices. Filling in behind
the initial vortices, one spanwise vortex at a time,
are vortices that over time constitute the spatially
growing mixing layer. Particle seeding is done from
the inlet plane beginning at time 7.5 which is well
after the transient mixing layer has swept out of the

flow domain.
The vortical makeup of mixing layers is strongly

affected by perturbations in the incoming flow. In
this way the spanwise rollers can be made to merge
in various patterns and the spacing of streamwise
vortex pairs appearing in the braid region can be
controlled, or delayed, among other possibilities [11].
In the present calculations large flow perturbations
are present due to the relative coarseness of the vor-
tex tubes representation. This makes the numeri-
cal mixing layer experience what is tantamount to
a broadband excitation lacking cyclical regularity.
On the other hand, examination of the developing
mixing layer over an extended time period (through
t = 12) reveals that even though the vortex patterns
change in detail, they nonetheless share common dy-
namical behaviors, for example, in the way in which
vortices develop, become perturbed, merge and ul-
timately breakdown into turbulence.

Some insights into mixing layer dynamics are
given in Figs. 1 - 3 containing renderings of the
vortex elements appearing in the calculations. Fig-
ure 1 shows a side view of the vortex elements at
a series of increasing times, while in Figs. 2 and
3 the side views at times t = 3.65 and 10.45 are
matched with plan views. The green and red in the
plan views refer to plus and minus streamwise cir-
culation, respectively, and is determined (somewhat
imprecisely) according to whether or not the end of a
particular filament is upstream of downstream of its
beginning. Examination of the plan views over time
does indicate that the rib vortices in the braid region
between rollers usually consist of counter-rotating
streamwise vortex pairs. This is particularly evi-
dent in Fig. 3 where two significant rib vortices are
visible in the braid region that are made up of green
and red vortices lying side by side. It is also evident
from Figs. 2 and 3 that some caution is needed in
judging the side views in Fig. 1 since there is gen-
erally more coherency to the vortical motions than
may be evident in a sideways integrated view.

The rightmost two vortices in the first image
in Fig. 1 are actually part of the original transient
growing mixing layer. These vortices have paired
several times to get to their current size. From one
image to the next in Fig. 1 the vortex system moves
to the right by a little over 1/3 of the domain. A
particularly clear view of this movement is visible
in the third and fourth pictures where the distinct
vortex to the left of the braid region in the middle
at time t = 5.35 becomes the large structure just
before the break in the mixing layer at the right at
time t = 7.05. Figure 1 shows that there is an ever
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changing pattern of vortex roll-up and merger. In
particular, the x location where the new roller vor-
tices appear varies in time. Animations show that
there are periods of relative calm in the incoming
vortex sheet followed by its rapid breakdown into
roller vortices. Undoubtedly the apparent random-
ness of the vortex patterns is partly driven by up-
stream feed back from the instantaneous vortex field.
Figure 1 also gives some idea of how the mixing layer
bends toward the slower moving stream [6]. The exit
direction of the inlet vortex plane shows some slight
movements toward the slow moving fluid and with
it vortices tend to be somewhat biased toward this
side. The excursions toward the slow speed side are
temporary as may be seen in the last image where
the incoming mixing layer is once again level.

One source of perturbation at the inlet is created
by the fixed length of the straight segments compos-
ing the incoming spanwise vortices. This controls
the wavelength at which the incoming filaments can
bend. This is visible in the planar views in Figs. 2
and 3, where the initially spanwise vortices are seen
to kink forward at every other junction. As the vor-
tices later agglomerate to form spanwise rollers, the
spanwise undulations are heightened, and in fact,
at the downstream pointing corners of the buckled
vortices streamwise vorticity in the form of counter-
rotating pairs are drawn out into the braid region
between rollers. As this process develops, the bend-
ing of rollers becomes more pronounced. The ap-
pearance of well defined rib vortices is somewhat
haphazard. As expected, the scale and spacing of
streamwise vortices grows with the size of the rollers.

A particularly interesting aspect of the processes
in these figures is that merging roller vortices tend
to be highly kinked yet in phase alignment with each
other. During merger both spanwise and streamwise
vorticity appear to join into a coherent larger scale
vortex. Merger of more than two vortices at once
also seems to occur, yet with similar alignment of
kinked vortices. Even after merger the process of
streamwise vortex generation continues to occur be-
tween the large scale merged vortices, as is seen in
Fig. 3.

Particle dispersion with one-way coupling

Particle dispersion under one-way coupling is in-
vestigated by seeding particles into the flow at the
inlet plane x = 0. For simplicity, the particles are
assumed to initially travel with the local fluid veloc-
ity. Particles are placed in the flow from both the
vertical line x = 0, z = 0 and from a horizontal line
x = 0, y = 0. The former view is one shared by

2D studies of the spatially growing mixing layer and
our results confirm this work in a qualitative sense,
as seen in Fig. 4 showing the position of particles
released over the interval 7.5 ≤ t ≤ 10.75 for calcu-
lations with St = 0.001, 4 and 100. Here blue is used
to mark particles beginning in the bottom layer and
red the particles in the top layer. The particles show
a sensitivity to Stokes number, with maximum dis-
persion in the range near St = 4 due to centrifugal
forces flinging particles to the outer edge of vortices.
For small St the particles behave like fluid particles
and tend to fill out the vortex cores, while at high
Stokes number the particles are able to show resis-
tance to the rollers and end up displacing a much
reduced amount.

It is interesting to observe for St = 4 that the
greatest dispersion into the slow moving fluid is from
initially fast moving particles. This is clearly an ef-
fect of convection by the rollers. Additional insights
into particle motion are contained in Figs. 5 − 7
showing the particle positions from an initially hor-
izontal line of particles as viewed from end-on and
top for three Stokes numbers. Here, alternating red
and blue colorings is done to help reveal motion and
mixing in the spanwise direction. The behavior of
the particles varies dramatically with St and shows
a series of stages that reflect underlying changes in
the vortical structure of the growing mixing layer.
For small values of St the particles are drawn to-
gether into the developing spanwise roller vortices.
Spanwise features reflect the different movements of
particles that are pushed up or down into the fast
and slow moving streams by the streamwise vortices.
As the vortices grow in scale, the particles in the
rollers disperse within them leading to well mixed
regions that increasingly overlap downstream. Evi-
dently, merger of the rollers enhances the uniformity
of dispersion in the streamwise direction.

For St = 4 the particles are not cleared out of
the braid region between the initially growing rollers
to the extent that they are for St = 0.001. There
appears to be a greater influence of the stream-
wise vortices in organizing the particles into streaks
between rollers. There is then pronounced disper-
sion in the vertical direction by the rollers that evi-
dently leads to a more extensive mixing by the end.
When the Stokes number is large Fig. 7 shows that
the most significant effect on mixing derives from
the disparate streamwise velocities of particles that
are pushed slightly into the fast and slower moving
streams. It should be emphasized that the identi-
cal underlying vortical field is employed for all three
Stokes numbers in this simulation.
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Figure 1: Side views of the mixing layer vortices at times 1.95, 3.65, 5.35, 7.05, 8.75, 10.45, 12.15

6



Figure 2: Top and side view of the mixing layer at time 3.65

Figure 3: Top and side view of the mixing layer at time 10.45
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A quantitative look at dispersion is given in Fig.
8 showing the standard deviations of the displace-
ments of the groups of particles that were released
into the flow at each time step during the time inter-
val covered by the previous three figures. Since 101
particles are introduced at each time step, the aver-
aging is over somewhat limited samples. Moreover,
the statistics strongly reflect the particularities of
the sequence of vortices and their mergers that took
place during this realization of the flow. Neverthe-
less the figure makes clear the superior dispersion
at St = 4, though interestingly enough this advan-
tage is to some extent mitigated over time in the
streamwise direction as the large vortices pair and
the flow has become turbulent. For the lateral di-
rections St = 4 has a lasting effect in enhancing dis-
persion, though clearly the merger events can cause
the advantage to diminish, at least temporarily.

Particle dispersion with two-way coupling

The scheme for modeling two-way coupling by
the introduction of new vortices has been imple-
mented and the results will be described fully in a
subsequent publication. Here space restrictions al-
low for including just a brief glimpse of what has
been found. This is indicated in Fig. 9 showing
the vortices produced via two-coupling during the
very beginning stages of the calculation. The view
here is of a detail of the mixing layer in the region
0 ≤ x ≤ 0.3 that shows how new vortices are pro-
duced during the formation of a new roller vortex.
Spanwise kinking of the roller vortex is responsible
for pushing the new vortices into the fast moving
stream and then form them into streamwise streaks.
How this modifies the overall development of the
mixing layer and dispersion will be brought out in
future analysis.

Conclusions

Numerical simulation of a spatially developing 3D
mixing layer including particle dispersion has been
carried out using the VorCat implementation of the
vortex method. Both the vortical structure of the
computed mixing layer and the properties of particle
dispersion with one-way coupling show much agree-
ment with prior work. This approach was also seen
to provide novel insights into the flow mechanisms
that can be of considerable value in practical appli-
cations. Detailed descriptions of all aspects of this
work will be provided in subsequent publications.
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Figure 4: Side view of particles released from a vertical line during the interval 7.5 ≤ x ≤ 10.75. Red
and blue denote particles released in the fast and slow streams, respectively. From top to bottom figures
correspond to St = 0.001, 4 and 100.
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Figure 5: End-on and plan views of particles inserted on horizontal line at y = 0. St = 0.001.
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Figure 6: End-on and plan views of particles inserted on horizontal line at y = 0. St = 4.
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Figure 7: End-on and plan views of particles inserted on horizontal line at y = 0. St = 100.
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Figure 8: Standard deviation of particle dispersions. Top to bottom is x, y and z directions. St = 0.001,
green; St = 4, blue; St = 100, red.

Figure 9: Detail of vortices produced by two-way coupling.
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