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Abstract

The VorCat implementation of the 3D vortex
method is described and preliminary applications
to boundary layer flow and the flow past a prolate
spheroid are discussed. Numerical solutions display-
ing the non-steady development of the turbulent vor-
ticity field in these settings is presented. Results
suggest the viability of the approach in the treat-
ment of difficult, three-dimensional complex turbu-
lent flows that pose significant problems for current
turbulence modeling techniques.

Introduction

Large Eddy Simulations (LES) of turbulent flow
most often are developed in the context of grid-
based numerical schemes in which transport mod-
els are used to represent subgrid scale phenomena.
Sufficient questions remain about the accuracy and
efficiency of such methods that there continues to be
interest in the development of alternative formula-
tions of LES. One such approach, with quite differ-
ent properties than grid-based schemes, is based on
the use of gridfree vortex methods where the com-
putational elements are convecting and interacting
vortices. Vortex methods give the opportunity to
incorporate subgrid scale models with a more direct
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and natural representation of turublent physics than
diffusive transport models. This paper considers one
such example of a vortex method appropriate to tur-
bulent flow, namely the VorCat code.

The success of LES depends on capturing the
physics of relatively small-scale phenomena as it af-
fects the dynamics of the large scales. As it turns
out, phenomena occurring at the subgrid scale are
often of great dynamical significance placing large
demand on the accuracy of subgrid scale models.
Among the important subgrid phenomena are the
vortex structure of the near-wall region that is re-
sponsible for the Reynolds shear stress [3] and the
vortices that stretch and fold taking energy to dis-
sipation scales [13]. The latter can also include
backscatter of energy to larger scales, so that simple
dissipative models built on scaling properties of the
inertial range are not sufficient. Other aspects of the
subgrid world include sharp shear layers and other
vortical objects that affect the development of the
large scale motions.

Since vortex methods are built directly on the
use of vortices as computational objects, there
should be an intrinsic efficiency to the representation
of turbulent flow directly through vortical elements.
Besides being a boon to the modeling of small scale
vortical phenomena, the need for transport models is
eliminated. On the other hand, retrieving the veloc-
ity field from vortical objects using the Biot-Savart
law, which is a fundamental aspect of vortex meth-
ods, is expensive since an N body problem must be
solved (each of the vortices in a collection of N will
effect the motion of the others).

With the development of fast schemes for eval-
uating velocities from collections of vortices such as
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the Fast Multipole Method (FMM) [6] it becomes
possible to reduce the computational labor in im-
plementing the Biot-Savart law to O(N) effort. This
means that it becomes practical to perform simula-
tions with millions of elements and thus a reason-
able representation of turbulence at the level of a
LES. This paper describes recent work in the de-
velopment of the commercial VorCat code that is
specifically designed for the treatment of large scale
complex turbulent flows. Some preliminary results
for flows containing solid boundaries will be given
here, specifically, a zero-pressure gradient boundary
layer and the flow around a prolate spheroid at angle
of attack. Some recent results for mixing layer flow
containing solid particles may be found in [2].

VorCat

In a vortex method the computational elements
are vortices, typically either blobs, tubes or sheets,
whose dynamics are determined from numerical
modeling of the vorticity equation. While blobs
are more commonly used in the modeling of vis-
cous diffsion than tubes, they have a tendency to
unbounded vorticity growth in situations where res-
olution becomes lost (e.g., during the natural tran-
sition into turbulent flow when sharp flow features
arise). Tube-like elements, on the other hand, are
stable in such circumstances in the sense that by
invoking Kelvin’s theorem their circulation remains
constant in time and hence bounded. Since the ef-
fect of viscosity in turbulent flow is confined to the
viscous sublayer adjacent to solid boundaries and to
small scale dissipation events throughout the flow, a
vortex method LES can be built around the use of
tubes without significant handicap and with much
to gain in stability and as a natural model for the
actual vortices appearing in turbulent flow.

In VorCat, vortices in the form of straight line
vortex segments act as the fundamental gridfree el-
ement. By moving their end points according to the
local fluid velocity, the convection, vortex stretching
and reorientation effects in the 3D vorticity equa-
tion are modeled. Vortex tubes that stretch beyond
a threshold are subdivided. This scheme is largely
motivated by computational efficiency, but can, in
principle, be improved by tracking smoothly deform-
ing vortices (e.g. using splines) or by taking into
account the subtleties of the cross-sectional areas of
tubes. Moreover, local violation of the requirement
that the vorticity vector be solenoidal is accepted at
the end points of filaments, since computational ex-
perience to date does not support a need to import

techniques that can correct this [8].
In high Reynolds number flows, vortex tubes

stretch and fold until they approach the fine scales
where viscous dissipation becomes important. Not
only is it prohibitively expense to run a vortex
method calculation until such scales are populated,
but there is no simple means for accurately accom-
modating viscous diffusion of vortex tubes. These
problems can be resolved by noting that there is no
need to track the vortex folding process to the vis-
cous scales [5]. Rather, the highly kinked vortex
tubes (i.e., hairpins) that are destined to ultimately
lose their energy to dissipation after more stretch-
ing and folding, can be removed directly. This elim-
inates primarily local energy since the far field ve-
locity due to hairpins is small.

With the use of the hairpin removal algorithm,
a vortex method has the character of a LES, since
hairpin removal has the effect of placing a lower
bound on the resolved scales. An additional ben-
efit of tubes is that they are the principal dynamical
feature of the near-wall region in bounded turbulent
flows. Particularly in the form of quasi-streamwise
vortices they control the momentum exchange near
boundaries that leads to the Reynolds shear stress.
Thus, with the use of a tube method, it becomes a
relatively simple matter to examine and insure that
there is a proper coverage of vortex elements in the
wall region.

Vortex sheets

Solid boundaries pose a number of problems to vor-
tex methods since the largely two-dimensional vor-
ticity layers covering them are not easily represented
through blob or tube-like elements. As illustrated in
Fig. 1 showing the mean vorticity in a DNS of chan-
nel flow [7], the vorticity undergoes large gradients
in the viscous sublayer of turbulent flow that must
be well represented if an accurate estimate is to be
made of the flux of vorticity into the flow. In Vor-
Cat a thin unstructured mesh of triangular prisms is
used to cover the viscous sublayer next to solid walls,
as seen in Fig. 1. The sheets are stacked normal to
the surface several layers deep, with a half-thickness
sheet adjacent to the boundary, and extend to ap-
proximately y+ = 30. The vorticity that gets to the
top surface sheets is turned into vortex tubes in im-
itation of the process by which new vortices appear
in turbulent flow during ejection events in the wall
layer. It should also be noted that the use of tri-
angular mesh is compatible with typical engineering
design studies that provide information about the
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shape of solid bodies in the form of triangulariza-
tions of the surface. Thus the boundary treatment
in VorCat is relatively simple to enact.

The 3D vorticity equation

∂Ω
∂t

+ (∇Ω)u = (∇u)Ω +
1

Re
∇2Ω, (1)

where u is the velocity, Ω is the vorticity and Re is
the Reynolds number is used to update the vortic-
ity distribution in the sheets. The convection and
stretching terms are approximated with a finite vol-
ume scheme where the convection term is upwinded
and first order accurate, and the stretching term is
second order. Computation of the Laplacian is split
into normal and tangential parts. The normal part
is approximated with a second order finite difference
formula and the tangential part is computed by dif-
ferentiating a least squares polynomial approxima-
tion.

Velocity field

In a vortex method the velocity field is recovered
from the vorticity field via

u(x, t) =
∫
�3

K(x − x′)Ω(x′, t)dx′ + up(x, t), (2)

where

K(x, y, z) = − 1
4π | x |3


 0 −z y

z 0 −x
−y x 0


 , (3)

is the Biot-Savart kernel and up is a potential flow
added to enforce the non-penetration boundary con-
dition at solid surfaces. Following standard practice
[5, 8], that part of the integral in (2) due to the ith
vortex is approximated via∫

�3
K(x−x′)Ω(x′, t)dx′ ≈ −Γi

4π

ri × si

| ri |3 φ(r/σ) (4)

where

φ(r) = 1 −
(

1 − 3
2
r3

)
e−r3

is a high-order smoothing function, Γi is the circu-
lation, ri = x − xi, xi is the tube center, si is an
axial vector along the length of the tube and σ is a
smoothing parameter.

The velocity due to the triangular-prism sheets
is determined by integrating the exact formula in (2)
over the triangular area assuming a piecewise linear
vorticity field and neglecting variations in the wall-
normal direction. After integration the singularity

in K(x−xi) is eliminated except at the edges of the
triangles where a finite velocity obtained as the end
result of a cancellation of the contribution from the
adjacent triangle. These special cases are handled
in the code by forcing analytic cancellation.

The potential flow necessary to ensure non-
penetration is derived from a collection of source
panels covering the same unstructured triangular
surface mesh as used in computing the sheet vor-
ticity field. A piecewise linear distribution of the
source strength field, q, is assumed. q is determined
from numerical solution of the defining equation

1
4π

∫
S

q(n · r)
r3

dS′ = −n · uv (5)

where r = x − x′. The left-hand side is the sur-
face normal velocity induced on the surface point x
by q and the right-hand side is the opposite of the
surface normal velocity induced by the vortex ele-
ments. By enforcing the boundary condition at the
node points of the triangularized surface, a linear
system of equations for nodal point source strengths
results, namely,

Aijqj = −n · uvi
(6)

where each element of Aij is the normal velocity in-
duced at surface node point i by a piecewise linear
source distribution with unit strength at node point
j and zero elsewhere. This equation is solved using
the GMRES iterative scheme [9]. The evaluation of
up from the source panels involves integrals identi-
cal to those appearing from the Biot-Savart law, so
the same integral evaluations can be used for both
purposes.

Vorticity in the half-thickness vortex sheets
touching solid surfaces is determined via finite dif-
ference approximation to velocity derivatives assum-
ing the no-slip boundary condition. The vorticity
in the wall sheets does not contribute to the veloc-
ity elsewhere in the flow since it is imagined to be
matched with vorticity of opposite sign residing in a
half-thickness image vortex sheets at the boundary
surface. In other words, a wall sheet and its image
induce a velocity tangential to the wall in the region
between them: one which balances the velocity due
to all other sheets and vortices. Elsewhere, these
vortices do not contribute to the velocity because of
cancellation of their opposite signed vorticity.

Fast Multipole method

VorCat relies on an adaptive, parallel implementa-
tion of the FMM [6, 11]. In this the flow domain
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is successively partitioned into nested cubic boxes
with the goal of placing a predetermined number of
vortices into each box. Regions with a high concen-
tration of vortices are covered by many small boxes,
whereas, regions with few vortices have a small num-
ber of large boxes.

The FMM works by combining the vector po-
tential induced by vortices in the root boxes into
truncated expansions in spherical harmonics about
the centers of the boxes. The expansions are com-
bined into expansions over parent boxes at higher
levels in the tree. Expansions at the highest level
are then shifted down a separate tree of field points
formed from boxes containing the points where the
velocity needs to be evaluated. The cumulative ef-
fect of many vortices is thus brought down to the
evaluation of a single expansion at the root level of
the field tree. The smallest allowable box is limited
by the parameter σ that controls the region where
smoothing of the Biot-Savart kernel occurs. Since
φ = 1 for r > 2.34 the smallest allowable box in
the FMM must have side 2.34σ. This requirement
can lead to less than optimal distribution of vortices.
To maintain the speed of the code a middleman ap-
proach is used where the velocities from vortices in
the local calculation are computed at the nodes of
nearby boxes and 3D linear interpolation used to get
the velocities at the vortex locations. In view of the
smoothness of the local velocity, this procedure does
not lead to any significant loss of accuracy.

Considerable effort at parallelizing the FMM al-
gorithm has been expended and more is planned for
the future. Figure 2 shows that excellent scalabil-
ity is achieved up to 16 processors. Beyond this
point the increasingly difficult task of load balanc-
ing reduces efficiency. Several steps for better dis-
tributing work among large number of processors are
currently being implemented. In the meantime, the
figure shows that a velocity computation involving
4 million vortices can be accomplished in under a
minute with 64 processors. This is sufficient to ac-
complish large scale computations in a reasonable
time frame.

Results

As part of an ongoing effort at benchmarking the
capabilities of VorCat, the code has been applied
to a number of configurations that can help to es-
tablish its effectiveness in modeling turbulent flows.
Here, some prelimanary results are given for the pre-
diction of turbulent flow in a zero-pressure gradient
boundary layer and past a 6:1 prolate spheroid at

30◦ angle of attack. This work is preliminary in the
sense that it is based on the use of relatively coarse
reresentations of the viscous sub-layer in terms of
triangularizations. Better resolved models of these
flows are currently under investigation using a new
version of the code that removes previous memory
limitations.

Boundary layer

The study of the zero-pressure gradient bound-
ary layer has been ongoing effort at VorCat in view
of the substantial amount that is known about it
from physical experiments and numerical simula-
tions. Figure 3 shows the computational domain,
marked in red, with periodic images of the flat plate
to either side. The use of image vortex systems in
satisfying periodidc boundary conditions is a nece-
sary consequence of the use of the Biot-Savart law.
By taking advantage of the translation properties of
the FMM solver, the cost of the image vortices can
be reduced substantially over the cost of the vortices
in the main test section. As seen in the figure, 16 im-
ages of the main section are used. This means that
for runs with 4 million vortices in the main section,
the influence of approximately 68 million vortices is
taken into account.

The zero-pressure-gradient turbulent boundary
layer is solved from an upstream laminar flow past
a trip causing transition to turbulence, much as it
is commonly done in physical experiments. Spe-
cial care in implementing upstream and downstream
boundary conditions is necessary. For example, in
a vortex method the vorticity that would naturally
exist downstream of any arbitrary end point to the
plate affects motion upstream [1], and this needs to
be taken into account in the downstream boundary
conditions.

Figures 4 and 5 show the vortex elements in a
boundary layer calculation as viewed from above and
side, respectively. The flow is tripped by a bump
placed at x=0.1 with height 0.003. The plate used
in the simulation has a total length of 2 and the
Reynolds number Rex = U∞x/ν = 400, 000 at the
end of the plate. Upstream of the trip, the vortices
are purely spanwise and the flow is laminar. Imme-
diately downstream of the bump the flow remains
laminar for a short distance, but soon transitions
into a highly perturbed state. This behavior is rem-
iniscent of the physical transition process in which
2D Tollmein-Schlichting waves first appear, followed
by a focusing of their spanwise vorticity, that sub-
sequently undergoes instability causing the appear-
ance of streamwise vorticity and finally turbulence.
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A close-up view of the vortex elements in the lat-
ter part of the transition region is shown in Fig.
6. Spanwise vorticity originating at the surface has
diffused outward and turned into spanwise vortex el-
ements. These fill up the laminar and transitional
flow regions. Subsequently, many vortices reorient
into the streamwise direction in association with
regions of faster and slower streamwise flow, i.e.,
the beginnings of the streaky structure that charac-
terizes turbulent boundary layers and underlies the
fully turbulent regions of the simulation. With the
appearance of the streamwise vorticity the flow be-
comes turbulent. It is also the case that the vortices
combine in groups to form structures of a larger scale
than any one vortex, as is evident from Figs. 4 and
5.

Viewed from the side in Fig. 5, the boundary
layer thickens quickly after transition and contin-
ues to grow downstream. The bulges visible at the
outer surface are characteristic of physical boundary
layer visualizations [3]. Like the physical case, they
suggest the presence of incursions of the outer flow
deep into the boundary layer. The vortices indicate
the presence of a relatively sharp boundary between
turbulence and the potential flow, as is also seen in
experiments. Further downstream the flow develops
many structural features in the form of coherent vor-
tices. Their appearance has much in common with
similar objects seen in smoke visualizations of the
turbulent boundary layer

Within the computed boundary layer are many
strong streamwise vortices of plus and minus rota-
tion. These drive momentum to and from the wall
creating a substantial negative Reynolds shear stress
in the simulation. A preliminary calculation of the
average mean velocity at x = 0.8 corresponding to
Rex = 160, 000 taken from a small set of flow re-
alizations is given in Fig. 7. U(y) is plotted vs.
the standard log law result U

+
= (1/.41) log y+ + 5,

the near-wall relation U
+

= y+, and a DNS pre-
diction [10] at Rθ = 670. It is evident that the
physical trend is well duplicated. Complete sets of
turbulence statistics will be obtained for new high-
resolution simulations.

Prolate spheroid

The flow past a 6:1 prolate spheroid under a
variety of conditions has been the object of con-
siderable attention in physical experiments [4, 14]
and thus provides a convenient venue with which
to examine the effectiveness of our vortex method
in predicting high Reynolds number flows. VorCat
has recently been applied to the case of a 30◦ an-

gle of attack with Reynolds numbers based on free
stream velocity and axial length of 150,000 and 1.6
million. The case with 4.2 million corresponds to
experiments and some results on this flow are just
beginning to be computed. In this work, the prolate
spheroid surface is covered with 9936 triangles, 10
layers of vortex sheets are used and by the end of a
calculation to time 1.56 there are approximately 2.5
million tubes.

Figs. 8 - 10 show views from the side, top and
back, respectively of the approximately strongest
20% of the vortices at time 1.56. There is also
considerable vorticity (not depicted) in the vortex
sheets adjacent to the surface. Flow separation oc-
curs along the leeward side over a region that is
perhaps narrower than that seen in experiments at
higher Reynolds number. Since experiments use
stings in the back and boundary layer trips near
the front, some caution must be exercised in making
strict comparisons (i.e. there can be significant sen-
sitivty to Reynolds number). This is currently under
investigation while finer resolution calculations are
being carried out. The size of the separated region
is suggested in Figs. 11 and 12 showing the velocity
u at the second sheet level and the pressure p on
the surface calculated using an integral formulation
[12]. Evidently, these properties are sufficiently good
to give the force predictions in Fig. 13 that agree
well with a range of experiments. For example, the
total (viscous + pressure) force in the y direction is
seen to fluctuate around 0.03 which is in the range
(0.027 - 0.030) seen in experiments at this angle of
attack [4, 14].

Conclusion

The vortex method for turbulent flow simulation de-
scribed herein has made a promising start toward
achieving the capability of efficiently modeling com-
plex, high Reynolds number turbulent flows. Rea-
sonable force and pressure predictions have been
made; flow and wake structure developing in the
boundary layer and the prolate spheroid show many
physical features. Future work will have enhanced
sublayer resolution and exhaustive comparisons with
high Reynolds number experiments will be carried
out.
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Figure 1: Relationship between the mean vorticity in turbulent flow [7] and the sublayer mesh.
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Figure 2: Timings and speed-up of FMM.
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 Boundary Layer Geometry Including 17 Periodic Images − Drawn to Scale

Flow

Figure 3: Geometry for boundary layer calculation.

Figure 4: View from above of vortex tubes in a zero-pressure gradient boundary layer.

Figure 5: Side view of vortex tubes in a zero-pressure gradient boundary layer.
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Figure 6: Detail of Fig. 1 in late transition showing the reorientation of spanwise vortices and the develop-
ment of turbulence structure.
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Figure 8: Side view of prolate spheroid showing top 20% of vortices.

Figure 9: Top view of prolate spheroid showing top 20% of vortices.

Figure 10: Rear view of prolate spheroid showing top 20% of vortices.
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Figure 11: Axial velocity just above leeward surface.
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Figure 12: Pressure on leeward surface.
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