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Vortex methods, particularly when regarded as a gridfree technique for large eddy simulation,
represent a promising new alternative for modeling high Reynolds number, turbulent, engineering
flows. To be successful, equal consideration must be given to efficiency and accuracy. Thus,
the requisite number of vortex elements in the calculation should be kept to a minimum, though
without sacrificing the essential flow physics. Moreover, it is necessary to incorporate a fast method
for calculating the velocities due to many vortex elements from the Biot-Savart law, e.g. through
use of a parallel implementation of the Fast Multipole method (Greengard and Rokhlin 1987).
This paper describes our recent efforts in developing a vortex method with these capabilities. A
brief discussion of some of the principal features of the method will be followed by a presentation
of some preliminary results in modeling high Reynolds number flow past a 6:1 prolate spheroid.

The vortex method

At a minimum, our implementation of the vortex method needs to resolve the energy containing
scales of turbulent flow down to, perhaps, the inertial range, as well as the dynamical processes
leading to the generation of new coherent vortices near boundaries. At the same time, it is critical
to prevent runaway growth in the number of vortex elements − a phenomenon which can occur
when self-adaptive vortex methods attempt to resolve ever finer features of the turbulent field. A
convenient means of accommodating these requirements is to make primary use of vortex tubes
in representing the flow field. This opens up the possibility of using Chorin’s hairpin removal and
vortex reconnection scheme (Chorin 1993) as a natural sub-grid renormalization. In effect, the flow
of energy to the dissipation range is stifled, and with it, unchecked production of vortex filaments,
yet, hopefully, without harm to the natural cascade of energy into the inertial range.

Adjacent to solid boundaries, a smoothed vortex sheet structure is imposed for the purpose of
efficiently capturing the wall normal vorticity flux − usually the only source of new vorticity
entering the flow domain. The sheets − which encompass just a small number of parallel layers,
typically 6 - 10 − have high aspect ratio in keeping with the large Reynolds number, so meaningful
modeling of the thin viscous sublayer is possible.

The collection of sheets and tubes are advanced in time in approximation to the governing three-
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dimensional vorticity equation. For the filaments, this is accomplished according to the algorithm:

∂Ω
∂t

+ (∇Ω)u = (∇u)Ω︸ ︷︷ ︸
convect filament endpoints

+
1
Re
∇2Ω︸ ︷︷ ︸

decay model

, (1)

where Re is the Reynolds number. As the tubes lengthen, they are divided into smaller segments.
The decay model, describe in the next section, is a way of modeling long time diffusive effects on
the vortex tubes. In particular, we may assume that viscous dissipation plays some role in the
demise of coherent vortices in a turbulent flow. This may be of some concern in internal flows,
such as periodic channel flow, where vortices, once present, will generally persist in the calculation
for long periods. In contrast, it is less of a priority in external flows where the viscous decay of
vortices can be assumed to take place downstream of the region of interest. Apart from this aspect
of the algorithm, (1) is a standard approach for filament calculations (Chorin 1993).

The vortex sheets are advanced through time according to the prescription:

∂Ω
∂t

+ (∇Ω)u︸ ︷︷ ︸
convect sheets & interpolate

= (∇u)Ω +
1
Re
∇2Ω︸ ︷︷ ︸

finite differences

. (2)

In this, convection of the sheets is immediately followed by their interpolation back into the mesh
as part of a fractional step method. The end result is to have the sheet vorticity field available
on the uniform mesh during every time step so that finite differences can be efficiently used to
estimate the wall-normal diffusion term. For the calculations described below, the stretching term
is approximated via

(∇u)Ω = |Ω|∂u
∂s

= |Ω|(u(x + s ∆r/2)− u(x− s ∆r/2))
∆r

(3)

where s is a coordinate in the direction of the vorticity vector and s is a unit vector in that
direction. Use of (3) removes the need to develop elaborate differencing formulas for the prolate
spheroid geometry. Since only wall normal diffusion is of interest, it is a simple matter to calculate
diffusion via finite differences. It should be remarked that the use of (2) and (3) is provisional. New
computations will use an unstructured triangularization of the surface sheet mesh and associated
finite volume formulas in representing the convection, stretching and diffusion terms in (2). In
addition, the vorticity in the triangularization is piecewise linear, while earlier computations on
the rectangular mesh used piecewise constant vorticity.

Vortex creation and destruction

Two different models of the vortex destruction process have been developed in order to help restrict
the vortices in the calculation to those which are most dynamically important. The intent is also
to mimic the reality that coherent vortices in turbulent flow do have a finite lifespan. Future
research will look into optimal ways of accommodating this process, though it should be noted,
as suggested above, that these considerations are of minimal concern for the case of the prolate
spheroid flow.

Preliminary calculations of channel flow using this method have shown that vortices which have
been in the computation for long periods often acquire many segments, and tend to be without
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favored orientation. This suggests the practice of removing such structures when they appear.
An alternative approach is to consider the accumulated effect of vortex stretching versus viscous
spreading on each individual tube. The well known Gaussian core solution (Leonard 1975) estab-
lishes an equilibrium radius for tubes, re, in which the effects of vortex stretching are in equilibrium
with diffusion. For a tube whose length increases from ∆s to ∆s′ in time ∆t it may be shown that

re = 2

√
∆t

Re(∆s′/∆s− 1)
. (4)

Generally, the radius of a vortex is either above or below the re value associated with the local
stretching experienced by the vortex at the given Reynolds number. If r > re, the vortex tends to
get thinner, if r < re, the vortex tends to widen. While it may be possible to model the process by
which vortices change core size (Rossi 1995), such an approach is unsuited to the present purposes,
since it fails to provide for retiring of old structures. The latter objective can be fulfilled, however,
by providing for a loss of circulation from the tubes whenever r < re. The amount is determined
by the extent to which vorticity would diffuse beyond r due to the imbalance of vortex stretching
and diffusion. The necessary relation is

Γn+1 = Γn
(

1− 4∆t
Re

(
1
r2
− 1
r2
e

))
, (5)

where Γn is the circulation at time n. If r > re, the circulation may be left the same, i.e.

Γn+1 = Γn, (6)

and if the tube faces a net contraction, i.e. ∆s′ < ∆s, then the maximum circulation loss can be
assessed, namely

Γn+1 = Γn
(

1− 4∆t
Re

1
r2

)
. (7)

For tubes composed of multiple segments, the average of ∆s and ∆s′ over all segments can be
used.

As the scheme is presently constituted, all vortices have the identical radius. Since high shear near
the walls leads to high stretching rates and hence small re, the influence of (5) or (7) in reducing
Γ should be most pronounced away from the wall where vortices are less organized and experience
slower rates of stretching. Whenever the circulation of a vortex drops below a threshold, it is
dropped from the calculation, thus providing a second means for eliminating vortices.

Providing for each new generation of vortices as they are produced in a turbulent flow is also a
critical aspect of the numerical scheme. The algorithm must at the same time be both sensitive
to the physical process by which new structures appear, yet not so unconstrained as to allow for
the formation of impossibly large numbers of new vortices. A successful means of accommodating
these conditions has been previously developed (Bernard 1996, 1998). In this, whenever vorticity
initially produced at the boundary in fulfillment of the no-slip condition is ejected in sufficient
strength beyond the sheet domain, it is formed into new tubes. In the turbulent boundary layer
some of the vortices subsequently stretch and reorient to become a new generation of structures
capable of causing the creation of new vortices. Large numbers of new vortex tubes are also
associated with flow separation as occurs in the prolate spheroid flow.
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Velocity field computation

Following standard practice (Puckett 1993), the velocity field is computed as a numerical approx-
imation to

u(x, t) =
∫
<3
Kη(x− x′)Ω(x′, t)dx′, (8)

where Kη is the smoothed Biot-Savart kernel. In the case of sheets,

Kη =

 K | x |≥ η
K

(
5
2 −

3
2

(
x
η

)2
)
|x|3
η3 | x |< η

where

K(x, y, z) = − 1
4π | x |3

 0 −z y
z 0 −x
−y x 0

 , (9)

and (8) may be simplified to∫
<3
Kη(x− x′)Ω(x′, t)dx′ = A(x− xi)×Ωi (10)

if it is assumed that the vorticity is constant over the sheets. In the far field for a rectangular
Cartesian coordinate system

A1 = − hj
8π

ln
(
r11 − Z1

r11 + Z1

r21 + Z1

r21 − Z1

r22 − Z2

r22 + Z2

r12 + Z2

r12 − Z2

)
A2 = − hj

4π

(
tan−1 X2Z2

Y r22
− tan−1 X2Z1

Y r21
− tan−1 X1Z2

Y r12
+ tan−1 X1Z1

Y r11

)
A3 = − hj

8π
ln
(
r11 −X1

r11 +X1

r21 +X1

r21 −X1

r22 −X2

r22 +X2

r12 +X2

r12 −X2

)
where r2

mn = X2
m + Y 2 + Z2

n, m, n = 1, 2, X1 = (xi − xj − lj)/η, X2 = (xi − xj + lj)/η, Z1 =
(zi − zj − dj)/η, Z2 = (zi − zj + dj)/η, and Y = (yi − yj)/η. Within the distance η of the sheets,
local versions of these formulas may be obtained analytically.

In the case of tubes, the common approximation∫
<3
Kη(x− x′)Ω(x′, t)dx′ = −Γi

4π
ri × si
| ri |3

φ(r/σ) (11)

may be made where

φ(r) =
(

1−
(

1− 3
2
r3
))

e−r
3

is a high-order smoothing function (Chorin, 1993). Additionally, when the velocity due to a sheet
at xi is sought at points x satisfying | x−xi | >∼ .5, (10) and (11) are fully equivalent if the sheet
is viewed as being a tube with

s = ∆s
Ω
| Ω | (12)

and
Γ∆s =| Ω | Vs (13)
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where Vs is the volume of the sheet and ∆s is arbitrary. The relative simplicity of the tube
formulas in comparison to (10) yields a significant gain in efficiency in computing these far field
interactions. Moreover, in a fast multipole algorithm, such as is implemented here (Dimas et al.
1998), letting sheets produce a velocity field as if they were tubes enables them to participate in
the fast calculation.

In summary, the velocity is computed from

u(x, t) =
Nsheets∑
i=1

A(x− xi)×Ωi −
1

4π

Nsegments∑
i=1

ri × si
| ri |3

Γi φ(r/σ) (14)

together with a potential flow that forces the non-penetration condition to be satisfied at solid
boundaries. The latter field is readily computed from standard techniques using boundary source
elements at the locations of the wall sheets (Hess and Smith 1967).

Prolate spheroid flow

The flow past a 6:1 prolate spheroid under a variety of conditions has been the object of considerable
attention in physical experiments (Chesnakas and Simpson 1994, Wetzel et al. 1998) and thus
provides a convenient venue with which to examine the effectiveness of our vortex method in
predicting high Reynolds number flows. In the case studied here, the Reynolds number based
on free stream velocity and axial length of the spheroid is Re = 4, 200, 000. Results have been
obtained for 0◦, 20◦ and 30◦ angle of attack. In these, the surface mesh is 64× 6× 16 in the axial,
surface normal and azimuthal directions, respectively. The sheets have thickness .0015 and aspect
ratio on the order of 20. The sheet thickness is just slightly larger than that necessary to well
resolve the viscous sublayer at the Reynolds number of interest. Further reduction in the sheet
thickness will be possible when triangular sheet elements are used, since they better resolve the
curvature of the spheroid than the current rectangular elements.

A limit on the time step is imposed by the requirement that sheets do not convect beyond their
neighbor’s position. The nominal value of ∆t = 0.0025 accomplishes this; only rarely in the
computations shown here must ∆t be reduced to satisfy this condition. The present calculations
have been run for approximately 1000 time steps covering an elapsed time of t = 2.5. This covers
primarily the startup flow plus what appears to be part of the first period of a cyclically evolving
wake.

Though still preliminary, the computed results are encouraging in a number of important aspects.
In particular, the computational algorithm is fully stable, and is not subject to run-away growth in
the number of vortex elements. Rather, an initial rapid growth in the number of vortices becomes
essentially linear in time, a rate which is compatible with the continuous development of the wake.
We may conclude that the vortex destruction, production and hairpin removal algorithms are
working as anticipated.

It is also interesting to observe the time history of the number of sites producing vortices shown
in Fig. 1. The maximum of this is 1024 corresponding to the number of surface sheets. It is seen
that during the time period 0.6 ≤ t ≤ 1.0 virtually the entire surface of the spheroid is encased
in new vortex tubes as a final response to the impulsive start of the spheroid. Subsequently, as
the turbulent wake is formed, the region producing new vortices shrinks to approximately half the
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surface. For the 20◦ case this is primarily on the leeward side where significant flow separation
is occurring. The windward side experiences a compression of the boundary layer that works
against the appearance of new tubes. It should also be noted that the underlying sheet vorticity
is generally non-steady in character regardless of whether the conditions under which new tubes
appear are satisfied. Finally, the figure shows that at 0◦ angle of attack a greater part of the
surface is producing vortices than the 20◦ case, though clearly a final equilibrium has yet to be
reached.
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Figure 1: Number of cites producing new tubes. —— 0◦ angle of attack; – – – 20◦ angle of attack.

The vortex filament distribution at t = 2.5 as viewed from the side and top of the 20◦ angle of
attack case are given in Figs. 2 and 3, and a similar side view of the 30◦ case is in Fig. 4.

Figure 2: Prolate spheroid flow, 20◦ angle of attack, side view at t = 2.5.

At the high Reynolds number in these calculations the wake is relatively narrow. This illustrates
one of the great strengths of the vortex method: the computational effort is confined to just the
support of the vorticity field, which is clearly a relatively small part of the whole flow domain. It
also may be observed how the computed vortex system, which consists of approximately 90,000
vortex segments at t = 2.5, has naturally formed into a series of larger scale coherent vortical
motions which give a definite structure to the wake.

It is seen in the figures that vortex tube generation is primarily on the back surface of the spheroid.
The flow is clearly fully turbulent with unsteady separation occurring towards the rear. Figure 5
gives a closer look at the vortical structure in the separation zone near the rear end. Plotted here
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Figure 3: Prolate spheroid flow, 20◦ angle of attack, top view at t = 2.5.

Figure 4: Prolate spheroid flow, 30◦ angle of attack, side view at t = 2.5.

are just vortices whose strengths are in the top 20% of all vortices. Clearly, this region contains
several significant coherent vortices engaged in a complex swirling motion as they lift up off the
surface. Such motions continue on into the wake as shown in Figs. 2 − 4.

Examination of the time evolution of the flow at 20◦ angle of attack reveals how the flow evolves
into the turbulent field shown in Figs. 2 and 3. The process unfolds first with the appearance of
counter-rotating axial vortices on the leeward side of the prolate spheroid. These are formed as
a result of the oblique flow over the surface converging toward the central axis. In short order a
spanwise oscillation appears in the vortex pair, which grows in amplitude until the vortices interact
forming a larger, swirling structure. Rapid development of the turbulent wake follows as the vortex
convects off the body with new vortices developing behind.
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Figure 5: Close up of prolate spheroid flow at rear edge, 20◦ angle of attack, top view at t = 2.5.

Other attractive features of the solutions include sharp separation off the rear tip and persistence
of the wake vortices in time. This highlights an advantage of the non-diffusive property of vortex
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methods, since typical RANS or LES calculations tend to prematurely dissipate shed vortices.

A plot of the surface pressure contours for the 0◦ and 20◦ flows is given in Fig. 6. The abscissa
here is the index of the mesh in the azimuthal direction running from 1 to 16, while the ordinate is
axial position along the body running from 1 to 64. Indices 1 and 16 in the azimuthal direction are
at the center of the leeward side of the spheroid, while 8 and 9 are at the center of the windward
side. The pressure was computed using a numerical solution to the integral pressure formulation
developed by Uhlman (1992).
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Figure 6: Pressure contours. —— negative pressure; – – – positive pressure.

The contrast in contours between the two cases displayed in Fig. 6 reflects the difference between
the massive asymmetrical flow separation of the 20◦ degree case vs. the essentially attached flow of
the 0◦ degree case. The pressure solver successfully captures these distinctions, e.g. note the large
high pressure region on the leeward side of the 20◦ case. The effect of individual wake structures
on the pressure field is evident in the large positive/negative pressure variations in the rear one
third of the leeward side of the 20◦ simulation. Note, as well, that the pressure near the front
end of the 0◦ case implies that the incoming flow is slightly at an angle caused by asymmetrical
positions of downstream structures. A direct comparison of computed pressures with experimental
data for the 30◦ case is shown in Fig. 7. The abscissa runs from 0◦ degrees at the windward side
to 180◦ at the leeward side. The top graph is at a point just beyond the mid section while the
lower one is near the end of the body.

The force history on the prolate spheroid for the 0◦ and 20◦ cases is shown in Fig. 8. For the 0◦

angle of attack case, the drag, lift and side force coefficients are shown, while for the 20◦ case the
drag and lift coefficients are given. The non-steadiness of the forces reflects the unsteady shedding
of vortical structures into the wake. Also included in the figure (as straight lines) are the average
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drag and lift during the time period 1.5 ≤ t ≤ 2.5 which gives some idea of the overall force
predictions. The mean drag values are approximately .06 and .1 for the 0◦ and 20◦ angle of attack
cases, respectively, while the mean lift is approximately .23 for the 20◦ case. The mean lift and
side force should be zero for the case with no angle of attack. It is evident from the figure that
the averaging period available to this run is insufficient to see this trend. For example, a quite
significant side force is felt which is just beginning to dissipate at the end of the calculation. We
assume that the side force will oscillate indefinitely along with the lift and that this mimics a real
physical effect.

Figure 7: Comparison of mean pressures with experiment for flow at 30◦ angle of attack.

Conclusion

The vortex method for turbulent flow simulation described herein has made a promising start
toward achieving the capability for efficiently modeling physically realistic turbulent flows. Rea-
sonable force and pressure predictions have been made; flow and wake structure developing on
the prolate spheroid show many realistic features. Further work will investigate the sensitivity of
the approach to the various simplifications used in creating an efficient scheme, and attempt to
demonstrate a close connection to experimental predictions over a range of different flows.
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