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ABSTRACT 

Recent results are presented from the application of a 
grid-free vortex method to the prediction of turbulent 
aerodynamic flows produced by road vehicles. The 
approach has the character of a large eddy simulation 
and incorporates a fast technique for evaluating the 
mutual interactions of several million vortex elements 
needed in describing the dynamically significant structure 
of the turbulent field. The simulations provide information 
about the unsteady evolution of the flow including forces, 
vortical structure and separation regions. Predicted  
mean velocity statistics are shown to compare favorably 
with physical experiments.   

INTRODUCTION 

Advances in supercomputing have brought Large Eddy 
Simulation (LES) techniques to the point where they 
represent a viable alternative to more traditional 
Reynolds-averaged Navier-Stokes (RANS) closures in 
modeling flows past ground vehicles [9,16]. Not only do 
LES schemes provide detailed transient information 
about forces, separation and wake structure that are 
absent in RANS methods [2,5,7,17], but they have the 
potential to provide substantially greater accuracy if for 
no other reason than that they make less demands on 
modeling per se. To a significant extent the advantages 
of LES can be further enhanced if a gridfree formulation 
based on the vortex method [12] is used in place of 
traditional gridbased schemes. In fact, vortex methods 
allow for a number of efficiencies and accuracies that are 
difficult to replicate within the confines of mesh based 
approaches.  This paper describes some of the essential 
aspects of performing simulations of road vehicle flows 
using a gridfree scheme and then presents some results 
from computations of flows past generic automobile 
shapes that illustrate its capabilities.    

The specific approach to be described is that developed 
by VorCat, Inc.1 [3,4] in which convecting and stretching 

                         
1 The VorCat software is protected under U.S. Patent 
No. 6512999. 

vortex tubes are used as the principal computational 
element in conjunction with a thin mesh of triangular 
prism sheets, several layers thick, next to solid 
boundaries upon which the 3D vorticity equation is 
solved via a finite volume scheme. The wall calculation is 
highly resolved – approaching that typically seen in direct 
numerical simulations (DNS) – since this determines the 
location and strength of vorticity produced at the wall 
surface and then ultimately the vorticity field held on the 
gridfree elements.  

Similar considerations in modeling the near wall flow 
apply in the case of traditional gridbased LES schemes. 
In fact, since all scales of motion next to boundaries are 
both energetic and subject to the effects of viscosity it is 
not evident that subgrid scale models are appropriate in 
this region. Rather, direct computation may be necessary 
if predictions are to be successful. For increasing 
Reynolds number the difficulty of employing adequate 
wall meshes is exacerbated. This often leads to the 
practice of imposing wall function boundary conditions 
that tend to be accurate under very limited 
circumstances. In the present case the boundary 
resolution problem is ameliorated to some extent 
because the thickness of the gridded region scales in 
wall units so it of necessity only increases with Reynolds 
number in two dimensions and not three. Secondly, the 
triangular prism elements are sheet-like and thus are 
efficient at providing coverage of the largely two-
dimensional region of high vorticity next to boundaries.   

There are several other features of the vortex method 
that provide advantages beyond that of gridbased 
methods. Thus, vortex tubes offer a substantially more 
efficient means of numerically representing physical 
vortices that are a dominant part of the dynamics of 
turbulent flow. Moreover, the convection and stretching 
of vortex elements can be accomplished without 
significant numerical diffusion so that sharp features of 
the flow, such as detached vortices and shear layers, 
remain sharp. Another useful aspect of vortices is that 
they provide an opportunity for imposing de facto 
“subgrid scale” models (that limit the resolution of 
vortices in the simulation) that are neither diffusive nor 
interfere with the natural process of backscatter by which 



energy flows from small to large scales. Vortex methods 
are also naturally self-adaptive in the sense that they 
supply enhanced resolution to local areas of the flow as 
determined by the physics. 

The next section describes some of the principal aspects 
of the gridfree methodology based on the vortex method. 
Following this is a discussion of some results taken from 
computations of the flow past the Morel [11] and Ahmed 
[1,10] bodies.  

GRIDFREE ALGORITHM 

Vortex methods are gridfree numerical schemes for 
solving the 3D vorticity equation [3] 
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where U and Ω are velocity and vorticity vectors, 
respectively, and Re is the Reynolds number. The terms 
on the right hand side represent, in order, convection, 
vortex stretching and diffusion. Some of the particular 
considerations needed in solving (1) for a collection of 
tube elements and in a fixed mesh of triangular prisms 
adjacent to boundaries is now considered.  

TUBE ELEMENTS 

Vortex tubes in the form of straight line segments form 
the gridfree computational element used in the VorCat 
code. Each tube is defined by its position as determined 
by its end points and its circulation Γ. The evolution of a 
tube is determined by the motion of its end points. In this 
way both the length and orientation of the tubes change 
in time. According to Kelvin's theorem, the circulation of 
a material vortex tube in an inviscid flow remains 
constant in time. This provides some justification - 
particularly in high Reynolds number flows away from 
boundaries - for assuming that Γ remains constant for 
each tube during its motion.  Taken together these steps 
provide an approximation to the convection and 
stretching terms in (1) and it is thus seen that the 
dynamics of tubes is easily accommodated in the 
numerical scheme.  

Associated with each vortex tube is the velocity field 
given by the approximate relation 
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that is derived from the Biot-Savart law. Here r = x - xc is 
the distance from a point x to the center of the tube, xc, 
and s is an axial vector along the tube axis. Following the 
common procedure for vortex methods, ψ(r/σ) is a 
smoothing function that is used to desingularize the Biot-
Savart kernel appearing in this relation. σ is a parameter 
that determines the size of the region over which the 
smoothing takes place. Beyond a distance proportional 
to σ, ψ = 1 and there is no smoothing.  

As a flow evolves in time, there is a tendency for the 
tubes to increase in length as part of the natural process 
of vortex stretching. A maximum length of tubes is 
allowed and whenever tubes are longer than this they are 
subdivided. In this way, tubes that start out as single 
straight segments are likely to become chains of tubes 
forming filaments as time goes on.  Note that such 
configurations may be viewed as discrete 
approximations to smooth physical tubes, so the shorter 
the tubes are allowed to be the more closely the discrete 
approximation follows the behavior of real tubes. There 
is a trade off between numerical efficiency and accuracy. 
Longer tubes are more computationally efficient but also 
less accurate. Generally, the maximum tube length is set 
as the average edge length of the triangles used in 
representing the boundary.  

It may be seen in (2) that the velocity field associated 
with a vortex tube is proportional to the product Γ |s|. The 
value of Γ associated with a tube is determined at the 
time of its creation near the top of the wall mesh 
depending on local flow conditions and varies from tube 
to tube. It has been determined that discretization error is 
reduced if a bound is placed on the product Γ |s| so 
tubes are also subdivided according to this condition. 
This allows the strongest vortices to more naturally 
evolve in time (i.e., fold and stretch more responsively to 
local flow conditions).  

Vortex tubes as computational elements have a 
significant capacity to mimic the true physical process by 
which energy cascades to small scales by vortex folding 
and stretching in spatially intermittent regions.  For a 
vortex method to be practical it must restrain the growth 
in the number of tubes by modeling dissipation without 
trying to actually compute the complete folding and 
stretching process. The ways in which this is done in the 
code represent a de facto subgrid-scale model in VorCat.  
In essence, the idea is to eliminate those vortices whose 
future evolution can be expected to involve dissipation. 
Folding vortex tubes with the appearance of hairpins are 
associated with a primarily local velocity field [6] due to 
cancellation of the far field velocities produced by the 
oppositely rotating legs of the hairpin. If it can be 
assumed that the lengths of the tube segments are small 
enough - generally in the inertial subrange - then it is 
reasonable to identify the local energy associated with 
the hairpins as energy that is destined to be lost via 
viscosity after subsequent stretching and folding takes it 
to the dissipation range. Removing the hairpins 
eliminates the associated energy without the expense of 
a detailed calculation. This is similar to the effect that 
subgrid scale models have in mesh based schemes in 
removing energy traveling to unresolved scales.     

Another aspect of the present subgrid scale modeling is 
contained in the idea that the vortices, even if they do not 
form tight hairpins, tend to stretch rapidly in many 
instances. As they stretch so too does the material 
volume that they occupy. For volume to be conserved 
the thickness of the tubes must shrink as they get longer. 
It should be noted that the tube area in this instance is 



understood implicitly and is not an actual parameter in 
the computations. After an individual tube has stretched 
and been subdivided many times, it is to be expected 
that its associated thickness is reduced to the scale of 
the dissipation range, and if so, the corresponding tube 
can be eliminated on the belief that its coherent vorticity 
would have been smoothed away by viscosity.  Between 
hairpin removal and the elimination of highly subdivided 
tubes, the population of vortices is prevented from 
increasing so rapidly as to render the method 
impractical.  

VORTEX PRISMS 

Solid surfaces are represented in VorCat through 
triangularizations. The triangular mesh used in the 
computation of the wall flow is grown out from the 
boundary triangles by erecting perpendiculars at the 
node points. The number of layers is usually taken to be 
11. The first layer is of half-thickness, say ∆y/2, where y 
is the direction normal to the boundary. Each of the 
remaining layers are of thickness ∆y. The vorticity is 
assumed to be constant over each triangular prism.  

The vorticity components at the wall surface represent 
boundary conditions for the computation of vorticity in the 
sheets. These are evaluated via finite difference 
approximations using the no-slip condition on the solid 
surface. It is thus important that ∆y be small enough that 
these approximations are accurate.  

The thickness of the region near the wall surface that 
needs to be covered by triangular prisms is an important 
consideration in the present methodology. It must be 
large enough to fully encompass the high vorticity and its 
gradients that are produced next to solid walls via 
viscosity. This region generally constitutes the viscous 
sublayer and an immediately adjacent part of the 
turbulent boundary layer. Here there is a large viscous 
flux of vorticity out of the solid surface leading to the 
appearance of vorticity in the flow.  The vorticity field in 
the mesh is determined as a solution to (1) via a finite 
volume scheme. The result of the computation is to 
establish the amount of vorticity that convects and 
diffuses to the top sheet layer, to subsequently be turned 
into new vortex tubes.  

For a given Reynolds number the thickness of the sheet 
region is targeted to be within y+ = 25 → 50, where y+= Uτ 
y/ν denotes wall coordinates and Uτ is the friction 
velocity. To utilize approximately 11 sheet levels, it is 
generally required that ∆y+ be taken to be approximately 
3. This places the sheet resolution in the normal direction 
at the high end of what may be appropriate for DNS and 
allows for a reasonable determination of the wall vorticity 
via a finite difference approximation.   

The sizes, dimensions, and overall comportment of the 
surface triangles can have a significant effect on the 
accuracy and performance of the finite volume scheme. 
For example, long narrow triangles need to be avoided.   
An especially important aspect of the mesh is the 

average aspect ratio defined as the average edge length 
of the triangles divided by ∆y. The larger this ratio is the 
coarser the spanwise resolution is and the more likely 
that there will be significant discretization error. On the 
other hand, the smaller the aspect ratio the more 
triangles are needed to cover a surface and the more 
expensive the computation becomes. There is also a 
lower limit for the aspect ratio since the triangular prisms 
must be “sheet-like" in order to use velocity formulas that 
have been developed with this condition in mind.  It is 
found empirically that an aspect ratio of 10 is perhaps 
ideal. If ∆y+ ≈ 3 and the triangular prisms have an 
average aspect ratio of 10, then the typical spanwise 
extent of the triangles is about 30 wall units, which is 
adequate for resolving streamwise vortical wall 
structures directly in terms of the vorticity field. 

FINITE VOLUME ALGORITHM 

The vorticity field is determined in the mesh region via a 
finite volume solution to the 3D vorticity equation. For 
each triangular prism the vorticity is that at its center, 
while the velocities are computed at the centers of the 
top and bottom triangles. The velocities at the six nodal 
corners of the prism are determined via area-weighted 
averaging of the velocities at the centers of the top and 
bottom triangles. The finite volume scheme uses a 
simple explicit time discretization. The convection term is 
approximated by applying the divergence theorem to its 
equivalent conservative form yielding an expression for 
the net flux of vorticity from a prism as a sum of 
contributions from each of its five sides. For this 
calculation the vorticity on the triangular faces is taken 
from the upwind prism. On the quadrilateral sides the 
vorticity is taken from a linear least square fit of the 
vorticities in prisms that are contiguous to the prism on 
the upwind side of the surface on the same and the 
immediately neighboring levels above and below, plus 
the one prism on the downwind side. 

The evaluation of the stretching term is done at the 
center of the prisms so the vorticity appearing in the 
expression is directly available. The velocity gradient is 
computed using the scalar divergence theorem following 
a similar approach as done in computing the convection 
term.  

The evaluation of the diffusion term in (1) distinguishes 
between diffusion normal and parallel to the surface. The 
Laplacian is expressed in a local rectangular Cartesian 
coordinate system and the term with normal derivatives 
is evaluated using a standard second order finite 
difference formula using the vorticity values at the 
centers of the prisms. The two tangential terms are 
computed by differentiation of a polynomial determined 
by a second order least-square fit of the vorticities of 
prisms located within a given radius of the prism center 
and in the layers immediately above and below the 
prism. 

 Several aspects of the time integration are noteworthy. 
First of all, the time step ∆t is limited by CFL conditions in 



the normal and tangential directions as well as a   
diffusive stability requirement. In practice ∆t satisfying 
these conditions is smaller than it would have to be in 
order to compute accurate motion of the vortex tubes. 
Consequently, a number of iterations of the finite volume 
scheme, referred to as subcycles, are performed before 
updating the positions of the vortex tubes. The 
contribution of the vortex tubes to the velocities in the 
mesh is held fixed during the sub-cycling.   

To solve the finite volume equations a boundary 
condition is needed for the vorticity at the top sheet level.  
An effective approach in this regard is to solve the finite 
volume equations only up to the second to last sheet 
level assuming the viscous flux in the wall normal 
direction to be constant over this sheet. A calculation of 
the total vorticity flux due to convection and diffusion into 
the top sheet level supplies the vorticity that is put into 
new tubes. In this, when the convective flux is away from 
the surface the vorticity at the top sheet is not needed (in 
view of the upwind model), while if the flux is toward the 
surface it is taken to be zero since all incoming vorticity is 
expected to be in the form of vortex tubes. 

The finite volume algorithm described here is found to 
offer stable solutions to the 3D vorticity equation over a 
wide range of flows that have been treated thus far. 
Moreover, tests have shown each separate part of the 
numerical discretization to be consistent and convergent 
under mesh refinement.    

NEW VORTICES 

Going hand in hand with the computation of the evolving 
vorticity field in the wall mesh is the necessity of 
collecting information on the amount of vorticity that 
fluxes outward into the top level of prisms.  The flux 
derives from both viscous and convective components. 
The vorticity that accumulates during the time steps in 
the sub-cycling is turned into a vortex tube if its 
magnitude surpasses a threshold.  The orientation of the 
new vortex is clear from the relative magnitudes of the 
vorticity components. Its center is at the center of the 
prism whose vorticity it will take. The length of the new 
tube is set by the condition that its ends just intersect the 
sides of the prism. Its strength is determined via the 
relation 

Γ |s| = |Ω| V                                                                (3)      

in which V is the volume of the prism. This condition 
forces the far field velocity from the new tube to match 
that of the prism.  

VELOCITY EVALUATION 

According to the Helmholtz decomposition theorem the 
velocity in incompressible flow can be written as the sum 
of a divergence free part and a potential flow that 
enforces the non-penetration boundary condition. For a 
given vorticity field Ω the solenoidal part takes the form 
of the Biot-Savart law 

 

This forms the basis for (2) in the case of tubes, and for 
the prisms it is integrated in closed form over the two 
lateral directions assuming constant vorticity. Since the 
prisms have high aspect ratio a simple midpoint 
approximation is used for the integration in the normal 
direction. In view of the expense of evaluating the 
complex formulas that result from integration of (4), they 
are used only in the near field. Elsewhere, the velocity 
due to the prisms is computed assuming an equivalent 
vortex tube with strength given by (3). The potential flow 
is determined via a boundary element method that 
makes use of the surface triangularization. Thus the 
computation of the complete velocity field is done without 
imposition of a grid covering the flow domain.  

 The locations where the velocity field is to be evaluated 
are known as “field points." These may be considered to 
be of three types: 1. the end points of vortex tubes not 
located within the mesh region; 2. the end point of tubes 
that are in the mesh region; and, 3. the centers of the 
triangles in the wall mesh. The contribution of the vortex 
tubes to all categories of field points is the same: they 
are evaluated using a parallel implementation of the Fast 
Multipole Method (FMM) [8,14]. The contribution of the 
sheets to the first and third category of mesh points is via 
the local or far field velocity sheet formulas as may be 
relevant. For the second category of points, however, the 
velocity contributed by the sheets is computed via a 
combination of interpolation and least square fitting. In 
particular, the velocities from the third category are used 
to estimate the velocities at the node points using area 
weighted averaging. To then get the velocity for the end 
point of a tube that lies in a particular prism, a least-
square fit is done using the six nodes of the prism. A 
motivation for this special approach is to enhance 
efficiency since the evaluation of the local sheet formulas 
for large numbers of vortices can be expensive.  It is also 
the case that this approach reduces some discretization 
error, particularly in the normal velocity component that 
arises from the assumption of piecewise constant 
vorticity over coarsely sized triangles.  

There are three separate calls to the FMM solver in the 
velocity computation. The first is for the purpose of 
evaluating the contributions of the tubes at all field 
points.  In this the flow domain is covered by an oct-tree 
whose boxes, in principle, should be subdivided 
adaptively until there is an optimal number of tubes in 
each box (approximately 100). Regions containing 
greater numbers of tubes undergo more subdivisions 
than others. A tube is placed into a box according to the 
location of its center point. A similar oct-tree is developed 
for the field points. The two trees are similar but might 
not be identical.  The best performance of the FMM can 
be expected to occur when the oct-trees have been 
grown to their optimal levels.  



The FMM works by combining the influence of tubes in a 
particular box into a single multi-pole expansion, and 
then gathering such expansions together for parent 
boxes that hold smaller “child” boxes. Similarly, 
expansions used in computing field points are brought 
from parent to child boxes down through the tree.  
Adjacent boxes at the smallest size affect each other 
only through the exact formulas, that is, such interactions 
cannot be included in the multipole expansions. For this 
reason, having more than the optimal number of tubes in 
a box can hamper efficiency of the FMM solver.  

In its application to computing the velocity due to tubes, it 
is generally not the case that the oct-trees can be grown 
to their optimal levels. Preventing this is the need to 
smooth the Biot-Savart kernel at small distances: the 
FMM depends on the unsmoothed kernel for its 
derivation. To maintain the effectiveness of the FMM in 
cases where many particles accumulate in the smallest 
boxes, a ``middleman" scheme is used in which the 
FMM is used to evaluate the velocities at certain nodal 
points within the boxes and then 3D linear interpolation is 
used to get the velocities at the field points in these 
boxes.  Typically, the nodal points are the corners of 
boxes constructed by two further subdivisions of the 
smallest boxes in the FMM oct-tree.  

The second call to the FMM is for contributions of 
sheets. In this case the positions of tubes lying within the 
mesh region are excluded from the field points. For this 
calculation the standard Biot-Savart kernel is used for 
non-near neighbor boxes while the integral formulas for 
triangles are used to compute the local contributions. 
Finally, the last call to the FMM is for the purpose of 
computing the contributions of the wall sources to the 
velocity field.  

The use of the FMM reduces the nominal O(N2) cost of 
evaluating the velocities at the locations of N vortices to 
a much more affordable  O(N log(N)) or even  O(N)   
calculation.   With parallelization, problems containing 
several million vortices can be treated in a reasonable 
time frame. For example, with 4 million vortices, the 
VorCat code maintains excellent parallel scalability 
through at least 16 processors, with scalability increasing 
as the number of vortices increases. In a typical result, a 
calculation with 4 million vortices on 64 processors takes 
under 1 minute of CPU time. This is sufficient to enable 
useful calculations for many complex flows in a 
reasonable time.    

RESULTS 

The previously described algorithm has been applied to a 
number of ground vehicle flows with a view toward 
establishing its accuracy and physical correctness. This 
work is ongoing in the sense that most of the 
computations have yet to be performed at Reynolds 
numbers of O(106) that are typical of experimental 
studies of the Ahmed and Morel body flows. In particular, 
triangularizations appropriate to high Reynolds number 
flow entail O(105) surface triangles and several million 

prisms to achieve a fine coverage of turbulent structures 
next to boundaries. Such computations can be expected 
to produce O(108) tubes and thus require a significant 
investment in computational resources (e.g., a larger 
number of parallel processors than are typically available 
for this developmental work).  

In the interest of more rapidly exploring the performance 
of the scheme over a wide range of cases the present 
results have been obtained from simulations with 
approximately 500,000 prisms and several million vortex 
tubes. These more modest computations can be 
completed within a day or two using 16 or 32 processor 
parallel computers. The results given here are for 
Reynolds numbers no greater than 500,000 since this is 
the upper limit for which a surface mesh containing 
approximately 30,000 triangles can provide resolution 
that is at least adequate for representing the physics of 
the viscous sublayer.   

 

Figure 1. U+ at Re=360,000. ◊, DNS from [13]; , 
gridfree scheme with fine mesh; _ · _, gridfree scheme 
with coarse mesh. 

BOUNDARY LAYER  

The particular issue of surface resolution has been 
studied via analysis of the velocity statistics of the 
turbulent boundary layers that form on the top and 
bottom surfaces of the Morel and Ahmed bodies. For 
example, Fig. 1 is a comparison of the mean velocity 
scaled in wall coordinates as computed from a Morel 
body at Re = 360,000 (based on streamwise body 
length) compared to a DNS calculation [13] and the 
classic log law relation U = 1/0.41 log(y+) + 5. In this 
discussion (x,y,z) respectively denote the streamwise, 
normal and transverse coordinates. The DNS solution 
has Reynolds number based on momentum thickness Rθ 
= 500, and the computed solution has Rθ = 622.  Both a 
coarse mesh and a fine mesh solution are shown, with 
the latter used just on the top surface of the body to limit 
the overall number of triangles. It is seen that in this 
instance the better resolution makes a significant 
difference in so far as the accuracy of the prediction is 
concerned. The different mesh characteristics are 



reflected in their spanwise resolution. For the fine mesh 
on average ∆z+ = 107.2 with aspect ratio 16.3, while for 
the coarse mesh ∆z+ = 240.4 with aspect ratio 36.9. 
Even though the fine mesh is less than ideal, it is still 
seen to produce a mean flow that is consistent with that 
of a turbulent boundary layer and, in fact, has a clear log 
law. In contrast, the coarser mesh is prone to significant 
error. For both computations, ∆y+ ≈ 6.5. The results for 
the Ahmed body flow presented below are obtained 
using meshes (depending on Reynolds number) that 
vary between the coarse and fine resolutions seen here.   

The normal Reynolds stresses corresponding to the 
mean velocity in Fig. 1 are somewhat over predicted as 
shown in Fig. 2. With better resolution these statistics 
improve. For example Figs. 3 and 4 show results for the 
mean velocity, Reynolds shear stress and turbulent 
kinetic energy for a better resolved simulation at Re = 
64,800. The first two statistics are excellent. The 
displacement in peak kinetic energy away from the wall 
may reflect the need for yet an additional enhancement 
to the wall resolution or may be due to differences 
between the Morel body and boundary layer flows. 

 
Figure 2. Normal Reynolds stresses for Re=360,000 
boundary layer. ◊, DNS from [13]; , gridfree scheme.  

Figure 3.  Mean U at Re=64,800. ○, DNS from [13]; , 
gridfree scheme.  

 

Figure 4.  Reynolds strear stress and turbulent kinetic 
energy for boundary layer at Re=64,800. ○, DNS from 
[13]; , gridfree scheme. 

AHMED BODY FLOW STATISTICS 

Several calculations have been made of the Ahmed body 
flow including an inviscid rather than viscous ground 
plane. Though this prevents the simulation from including 
the effect of vorticity generated on the floor of the wind 
tunnel, it has the advantage of reducing the scale of the 
computations while still allowing for meaningful 
comparisons with experiments. A viscous ground plane 
will be included in future computations of the Ahmed 
body flow. Some idea of the quantitative accuracy of the 
approach is obtained by comparing computed and 
measured mean velocities and Reynolds stresses for the 
case with 25o base slant angle. The computations are for 
Re = 500,000, a value that is at the upper limit of what 
can be tolerated with available computer resources, but 
still less than the value Re = 2,784,000 used in 
experiments. In the computations the Ahmed body is 
represented using a surface mesh containing 32,432 
triangles with an additional 3920 triangles on the ground 
plane. With 10 layers of prisms above the surface prisms 
there are thus 324,320 total. A posteriori it is determined 
that the average prism in the simulation has thickness 
12.8 in wall coordinates and average spanwise extent of 
280. While this surface mesh is clearly less than optimal 
as suggested by the boundary layer results, nonetheless 
the predicted statistics show much agreement with the 
physical experiments. This is now illustrated in a number 
of comparisons for streamwise, normal and transverse 
mean velocities, U, V and W, respectively, turbulent 

kinetic energy, K, and Reynolds shear stress, uv , at 
various locations situated along the centerline of the 
body and above the rear window. The numerical 
calculation is run from an impulsive start until 
approximately t = 1.5 with averaging performed over 
essentially the last 0.5 time units. The front surface of the 
body is at x = 0, the rear is at x = 1, the ground plane is 
at y = 0, and the bottom and top surfaces of the Ahmed 
body are at y=0.04675 and 0.3253, respectively. 
Moreover, the body extends in the spanwise direction 



from z = -0.1874 to 0.1874 and the rear slanted window 
begins at approximately x = 0.837 and ends at x = 1.  

Figures 5 - 8 pertain to the mean streamwise velocity, U, 
while Figs. 9 – 12 are for V. Figures 5 and 9 are for 
locations on the centerline in front of the body and on the 
top surface. Ahead of the body the close agreement 
between experiment and computation reflects the more 
or less potential nature of the flow in this region. Near y = 
0 the effect of using an inviscid boundary is visible. The 
plots for x > 0 show that the acceleration of the fluid over 
the top surface is captured as well as the boundary layer 
profiles over the rear window. In these results it can be 
expected that the modeling of the turbulent physics plays 
a role. It may also be noticed that the qualitative 
agreement with experiment is quite good, in addition to 
the quantitative accuracy.  

The predicted wake characteristics on the centerline are 
shown in Figs. 6 and 10. Just downstream of the body, at 
x = 1.0364 the wake profile is fairly well captured 
including the recirculating zone. The comparisons further 
downstream suggest that the extent of the wake deficit is 
smaller than experiment. It may be expected that a 
number of factors contribute to this disparity, with the 
most obvious being the smaller Reynolds number of the 
simulation in comparison to experiment. This is 
supported by a calculation at Re = 100,000 that was 
observed to have a smaller wake deficit than the 
calculation at higher Reynolds number. The flow in the 
wake is highly non-steady and it is clear that the 
averaging interval that is used here to obtain statistics is 
not sufficiently long to produce entirely smooth results. In 
fact, this limitation is felt most strongly in the last few 
measurement stations and may also have some 
responsibility for the smaller than measured wake deficit. 
For example, it may be inferred from the last plot in Fig. 
10 that the vortices produced by the body have barely 
reached this location by the end of the simulation.  

Figures 7 and 8 for U and Figs. 11 and 12 for V illustrate 
the quality of the computed solution at different spanwise 
locations at two different x positions centered over the 
rear window. Many details of the boundary layer in this 
region appear to be well captured. It is interesting to note 
that the profiles at z = 0.21073 are just off to the side of 
the body. These are embedded in the turbulent, 
separated boundary layer that is generated on the side of 
the vehicle. These curves are clearly quite noisy and 
require a longer averaging interval to produce smooth 
statistics. Figure 13 shows W at three z locations on 
either side of the body. This plot demonstrates that the 
average flow over the window is toward the centerline, as 
is expected in the case of the 25o base slant angle.   

 

 

Figure 5 Computed streamwise velocity on centerline, 
; vs. experiment [10], ◊.  

 

Figure 6. Computed streamwise velocity on wake 
centerline, ; vs. experiment [10], ◊. 

 

Figure 7. Computed streamwise velocity at spanwise 
locations at x = 0.8678, ; vs. experiment [10], ◊. 



 

Figure 8. Computed streamwise velocity at spanwise 
locations at x = 0.9157, ; vs. experiment [10], ◊. 

 

Figure 9 Computed normal (V) velocity on centerline, ; 
vs. experiment [10], ◊.  

 

Figure 10. Computed normal (V) velocity on wake 
centerline, ; vs. experiment [10], ◊. 

 

Figure 11. Computed normal (V) velocity at spanwise 
locations at x = 0.8678, ; vs. experiment [10], ◊. 

 

Figure 12. Computed normal (V) velocity at spanwise 
locations at x = 0.9157, ; vs. experiment [10], ◊. 

 

Figure 13. Computed transverse (W) velocity at 
spanwise locations at x = 0.8678, ; vs. experiment 
[10], ◊. 



Figure 14 compares the predicted K vs. experiment at 
points along the centerline. The first two locations are 
over the window and the remaining four are in the wake. 
The accuracy of the individual curves varies somewhat 
from location to location with some trends quite 
accurately captured. There is a clear need for longer 
averaging to produce smoother statistics and this might 
have some effect on the uniformity of the predictions. In 
fact, it is not hard to imagine that higher order statistics 
such as K are particularly vulnerable to the influence of 
individual large scale flow events if the averaging is over 
too short a time interval. In any case, it is interesting to 
note that the double-peaked K distribution in the near 
wake is well reproduced, particularly at x = 1.0364.  
Figures 15 and 16 show K for locations over the rear 
window. Here, more averaging is clearly required if the 
accuracy of the predictions is to be carefully evaluated. A 
clear trend toward over prediction is visible in these 
results.  This is perhaps related to the use of an overly 
coarse surface mesh, very much like the situation 
previously encountered in regards to Fig. 2.  

 

Figure 14. Computed turbulent kinetic energy on 
centerline, ; vs. experiment [10],  ◊.  

 

Figure 15. Computed K at spanwise locations at x = 
0.8678, ; vs. experiment [10],  ◊. 

 

Figure 16. Computed turbulent kinetic energy at 
spanwise locations at x = 0.9157, ; vs. experiment 
[10],  ◊. 

 

Figure 17. Computed Reynolds shear stress at spanwise 
locations at x = 0.9157, ; vs. experiment [10],  ◊. 

The Reynolds shear stress predictions in the middle of 
the rear window are shown in Fig. 17. The numerical 
model clearly is able to reproduce the preferential 

correlation that underlies uv  as was previously seen in 
Fig. 4. This generally requires that the vortical structures 
of turbulence that cause the Reynolds shear stresses are 
correctly accounted for in the simulation. More insight 
into this aspect of the solution can be achieved by 
visualizing the gridfree vortical elements that make up 
the flow, as will now be considered.  

VISUALIZATIONS 

Visualization results are shown primarily for a relatively 
well resolved computation in which the base slant angle 
is 30o and the Reynolds number Re = 40,000. In this 
calculation there are 28,538 triangles on the vehicle 
surface. Three-dimensional renderings of the vortices 
give an indication of separation regions and the locations 
and degree of turbulence production.  Such views often 



show where many small vortices have combined to form 
larger scale structures that might be of interest. It is also 
possible to obtain information about the origination on 
the body of vorticity appearing in the wake.    

Shown here in Figs. 18 - 20 are  images at time t = 1.91 
of the approximately 2.5 million vortex tubes that have 
been generated in the course of a calculation of the 
Ahmed body flow impulsively moved from rest at t=0. 
The figures respectively show views from the side, the 
front and the top. Both Figs. 18 and 20 show boundary 
layers forming from the leading edge of the body, their 
downstream transition to turbulence,  and the formation 
of  turbulent structures. The latter are most visible in the 
large mainly streamwise agglomerations of vortices as 
well as the corrugated outer edges of the vortex layers. 
Such structures are consistent with the known 
characteristics of turbulent boundary layers and help 
explain the good agreement in predicting velocity 
statistics shown previously.   Another perspective on the 
flow is given in Fig. 21 showing contours of normal 
velocity just above the top surface of the body. There is 
clear evidence here for the existence of the streaky 
structure that is the footprint of coherent streamwise 
vortices in boundary layer flow [5].   

 

Figure 18. Side view of vortices in Ahmed body flow. 

 

 

Figure 19. Front view of vortices in Ahmed body flow. 

 

 

Figure 20. Top view of vortices in Ahmed body flow. 

 

 

Figure 21. Wall normal velocity above top surface of the 
Ahmed body.  

The flow over the rear window is an important feature of 
the Ahmed body flow. Instantaneous quiver plots of 
velocity vectors in planes parallel to the symmetry plane 
are shown in Figs. 22 and 23 for base slant angles of 
12.5o and 30o, respectively. In the former case there is 
no separation over the window, though a large 
recirculating vortex forms against the rear. These results 
are consistent with the known behavior of the flow at this 
angle. For the larger angle there is clearly a considerable 
degree of separation over both the rear window and 
back. Animations of the velocity field show the separated 
flow regions to vary rapidly in time and spatial position.  
Once again the behavior is consistent with the high drag 
configuration of the Ahmed body that occurs at base 
slant angles in the vicinity of 30o.  



 

Figure 22. Instantaneous velocity vectors over the rear of 
the Ahmed body at 12.5o base slant angle. 

 

Figure 23. Instantaneous velocity vectors over the rear of 
the Ahmed body at 30o base slant angle. 

Some insights into the vortical nature of the flow over the 
window may be obtained from Figs. 24 and 25. The 
former shows contours of streamwise vorticity close to 
the body surface in which there is a clear pattern of 
alternating sign in the vorticity just as the flow moves 
over the window. This hints at the presence of some 
spanwise structure to the separated flow at this location, 
not unlike similar phenomena in mixing layers [4]. The 
visualization of vortices in Fig. 25 gives some evidence 
of the vortical flow over the C-pillars. This turbulent state 
has evolved from the situation shown in Fig. 26 that is 
not long after the start up of the calculation and before 
the flow has transitioned to turbulence. Here the vortices 
are clearly seen to curl over the C-pillars. It is also 
interesting to note the rollup of the vorticity shedding off 
the bottom rear edge of the body.  

 

Figure 24. Streamwise vorticity contours on the top 
surface of the Ahmed body flow. 

 

 

Figure 25. Detail of vortices near the rear window at an 
early time showing wrapping of vortices over the C-
pillars. 

 

Figure 26. Vortices shed off rear shortly after startup of 
the simulation.  

 



FORCES 

The pressure in a vortex method is determined at any 
fixed time step as a post-processing step using the 
instantaneous vorticity distribution that is contained in the 
tubes and prisms. A particularly convenient way to get 
pressure on the solid viscous surfaces appearing in a 
computation is by an application of Green’s third identity 
[15]. Due to the appearance of a singularity in the 
Green’s function, however, some care must be given to 
how the numerical quadrature is carried out. For 
example, the computed pressure can be a sensitive 
function of the evolving vorticity field, and if so, relatively 
long time averages are needed to get mean pressures. 
Integrated quantities depending on pressure such as the 
drag coefficient are less affected by transient 
fluctuations.  

In the present case a higher order pressure solver that is 
useful for obtaining local pressure fields is in the final 
state of development and results from this will be 
reported in the future. A less accurate, preliminary 
pressure solver has been developed in order to verify the 
concept. This is useful for obtaining integrated quantities 
such as drag but requires long time averaging to get 
converged pressure statistics. Fig. 27 shows the 
computed drag force for the 30o Ahmed body as a 
function of time. To the extent that a comparison can be 
made between flows at quite different Reynolds 
numbers, it may be noted that the value in the figure at 
the last time is in the vicinity of 0.42 and this may be 
contrasted with the experimental value of 0.36.  

 

 

Figure 27. Time dependence of computed drag 
coefficient for 30o Ahmed body simulation at Re = 40,000. 

CONCLUSION 

The computational results presented here demonstrate 
some of the capabilities of a gridfree approach to large 
eddy simulation in modeling ground vehicle flows. While 
many of the difficulties of grid generation that typically 
affect LES schemes are avoided in this work, the study 
does show the importance of having a reasonably fine 

near-wall mesh to resolve the important vorticity 
producing motions upon which the gridfree elements 
depend. The wall resolution issue reflects the fact that 
with the absence of a turbulence model per se, the 
Reynolds number is a real parameter in this method and 
its effect on the physics has to be taken into account 
where necessary.  

The present computations demonstrate that 
quantitatively accurate predictions of velocity statistics 
can be obtained as long as appropriate wall resolution is 
maintained. The simulations are seen to provide a wealth 
of visual information about the nature of the turbulent 
and rotational motions produced by ground vehicles. 
Future computations will be focused on scaling up the 
simulations to exactly match the conditions of 
experiments. This is primarily a question of securing 
computational resources commensurate with the large 
storage requirements for simulations containing ten 
million or more vortices and several million wall prisms. 
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