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A hybrid vortex filament scheme with the capability of simulating bounded turbulent flows is described. Viscous

generation of new vortex elements at solid surfaces is accomplished through the intermediary step of solving the

viscous vorticity transport equation on a thin boundary mesh via a finite difference and finite volume method. The

transitional and turbulent boundary-layer flow past a wide, finite thickness, flat plate with rounded edges is

computed with a view toward validating the methodology and gaining new insight into the structural aspects of

transition. The predicted mean velocity and related statistics are well matched to experimental and numerical data.

The representation of the flow through vortex filaments reveals that a distinction needs to be made between vortical

structures, on one hand, and the rotationalmotion that they produce in theflowfield, on the other hand. In particular,

hairpin-shaped regions that are commonly found by vortex identification schemes are found to not be structures in

their own right, but rather the rotational signature of raised furrows in the surface vortex sheet. The latter overlie

low-speed streaks and evolve to include ejected mushroom-shaped structures as well as spanwise vortices associated

with roll-up.

Nomenclature

Cf = local skin-friction coefficient
cf = drag coefficient
M = number of wall-normal grid levels
LT = average triangle edge length
Re = Reynolds number
s = axial vector on vortex tube
U, u = streamwise velocity and fluctuation
Ui = velocity vector
U� = friction velocity
U1 = far-field velocity
V, v = wall-normal velocity and fluctuation
VT = prism volume
W, w = spanwise velocity and fluctuation
x = streamwise coordinate
y = wall-normal coordinate
z = spanwise coordinate
� = circulation
� = displacement thickness
� = similarity variable
� = momentum thickness
� = smoothing parameter
� = smoothing function
�i = vorticity vector

Superscript

� = wall variables

I. Introduction

B ELIEVING that it may be advantageous to represent turbulent
flow numerically via grid-free vortex filaments is a natural

response to the highly rotational character of turbulence that
includes, at one extreme, small-scale wormlike vortices and, at the
other extreme, well-organized vortices associated with the flow
origins [1]. The recognition of the central importance of vortex
dynamics to understanding turbulent physics is also implicit in the
many studies that seek to extract vortex structure from computed
velocity fields [2] or even go so far as to reconstruct from the velocity
field the time-dependent behavior of the vortical structures [3]. Such
analyses (which are inherently difficult for traditional grid-based
schemes) are straightforward for the vortex filament approach, since
the vortex dynamics are provided directly.

As in grid-based simulations of turbulence, it is not generally
practical to represent the full range of scales with a filament scheme,
so that the most useful context for such an approach is as a large eddy
simulation (LES), in which the effects of small, invisible, subgrid
motions on the resolved are modeled. Recent applications of such a
grid-free LES method to turbulent free shear flows including the
mixing layer [4] and round coflowing jet [5] have demonstrated some
of the advantages of the approach. The present work is concerned
with the implementation of this idea in the more general context of
flows containing solid walls with a primary focus on the turbulent
boundary layer.

In traditional grid-based LES, each vortex of resolvable scale that
appears in the simulated flowfield requires a collection of individual
mesh points in its representation. The same vortex is generally more
efficiently resolved in terms of vortex elements, though a potentially
more significant advantage of a filament scheme is that without a
mesh, flow features that otherwise may be smeared by numerical
diffusion [6,7] remain sharply defined. In the context of an LES, it is
also necessary to provide a subgrid-scale model that acts as a
gatekeeper for two-way energy transfer between small dissipative
scales and large resolved scales. Primarily for reasons having to do
with numerical stability, subgrid models used in grid-based schemes
[8] tend to rely on diffusive models that have the potential to distort
important vortical flow features aswell as inhibit local backscatter. In
contrast, the vortex filament method relies on a nondiffusive vortex
loop-removal algorithm [9–11] that accounts for local energy
dissipation without compromising the sharpness of coherent vortical
structures or hindering the passage of energy from small to large
scales.

Whatever advantages vortex filaments might have in representing
turbulence structure, this is lost in the region flush against solid
boundaries, within which the vorticity field acquires in part a largely
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two-dimensional sheetlike character. In fact, gradients in the vorticity
field at thewall surface control viscous production of vorticity, and it
is unlikely that tubelike elements even in prodigious numbers can do
justice to the accurate representation of this type of field. It is also
well known that essentially all scales of motion next to a wall need to
be resolved, since no part of the motion can be safely considered
subgrid and suitable formodeling. These considerationsmotivate the
belief that if the filament scheme is to be extended to include solid
boundaries, then it must be done so in such a way that the near-wall
vorticityfield (specifically, that part withinwhich viscous production
of new vorticity takes place) is simulated with the resolution and
accuracy of a conventional direct numerical simulation (DNS).

In this paper, a hybrid scheme is described that combines the
vortex filament representation of the flow outside the immediate
vicinity of walls, with a finite volume and finite difference algorithm
applied to the solution of the full three-dimensional viscous vorticity
equation on a thin mesh situated against bounding solid surfaces.
New filaments appear in the flow at the outer edge of the near-wall
mesh. The latter is limited in thickness to the extent necessary towell
represent near-wall viscous vorticity diffusion. In practice, the wall
mesh is erected from a surface triangularization maintaining a
sheetlike aspect ratio to the prism elements and thus avoids many of
the complexities normally associated with three-dimensional mesh
development.

The turbulent boundary layer is treated here as an important step in
validating the vortex filament methodology in the presence of solid
walls. At the same time it will be seen that the vortex calculations
offer a novel viewpoint with which to examine the physics of the
boundary layer and, from so doing, arrive at new understanding of
some of its essential features. A case in point will be the opportunity
to take amore holistic view of the vortical field during transition than
has been normally possible, and from this refine our understanding of
the origin, meaning, and behavior of previously noted vortical
features.

Because of its fundamental nature, the boundary layer (both
transitional and fully turbulent) has been the object of many previous
numerical studies involving both DNS and LES. Among the first
DNS calculations, Spalart [12] accounted for spatial growth via a
mapping technique so as to enable the use of a spectral scheme with
streamwise periodic boundary conditions. This study producedwell-
documented averaged flow data for the turbulent boundary layer at
several Reynolds numbers that are helpful for validating the present
calculations. In an early study, the spatially growing boundary layer
was treated directly by Rai and Moin [13] using a zonal finite
difference approach. They computed the boundary-layer transition
into the turbulent regime. Many subsequent DNS studies of the
spatially developing boundary layer have focused on the transitional
case in which a variety of different modes of the process have been
investigated. Among these, Rist and Fasel [14] studied the evolution
of controlled disturbances and gained insights into the growth and
breakup of vortical structures. Jacobs and Durbin [15] simulated
bypass transition in a spatially growing boundary layer excited by
freestream turbulence. They examined the origins of low-speed
streaks and their association with the mechanisms causing the
appearance of turbulent spots. The dynamics of the so-called
Klebanoff transitionwere studied viamatched experiments andDNS
byBake et al. [16]. A detailed scenariowas developed connecting the
onset of random disturbances in the boundary layer with the growth
and evolution of vortical structures. Ovchinnikov et al. [17]
computed the effect of large-amplitude freestream turbulence on the
transitional boundary layer, noting circumstances when the
breakdown of low-speed streaks occurs vs the appearance of
turbulent spots. Recently, Wu and Moin [18] computed the spatially
growing boundary layer through transition andwell into the turbulent
realm. A primary focus of this work is concernedwith demonstrating
that vortical structures in the form of hairpin packets [19] play a
dominant role as a structural element throughout all aspects of the
boundary layer from transition onward.

Within the realm of LES techniques there has also been some
significant work devoted to studying boundary layers. These studies
tend to require the use of specially adapted subgridmodels in order to

accommodate the presence of transition. For example, Ducros et al.
[20] simulated a forced, narrow, Mach 0.5 boundary layer through
transition to turbulence using a subgrid model that allows for weak
perturbations without overly dissipating the turbulent field. They
were able to qualitatively describe some aspects of transition into
turbulence. The turbulent region of the flow retained structural
features such as streaks and bursting that are commonly observed in
other simulations. Another application of LES to boundary-layer
modeling in the compressible regime was performed by Kawai and
Fujii [21], inwhich the effects of numerical andmodeling parameters
on the physicality of the transitional and turbulent structure were
explored.

Despite the unorthodoxy of the vortex filament representation of
the boundary layer used in the present study, it will be clear below
that the statistical measures of the computed field in terms of mean
velocity and other properties show considerable conformity to that
found in traditional studies. Moreover, it will be seen that a
connection can be made between the physical appearance of the
filament field and the coherent vortical objects that have played a
major role in categorizing the dynamical processes at work in the
boundary layer: both transitional and turbulent. It is through this
connection (which does not require the use of a vortex identification
procedure as an intermediary) that an opportunity arrives to acquire
new insights into the physics of the boundary layer.

The hybrid vortex filament approach will be described in the next
section with an emphasis on the finite volume and finite difference
algorithm. This is followed by a discussion of the numerical problem
to be consideredwith subsequent sections describing the quantitative
and structural aspects of the predicted results for transitional and
turbulent boundary layers. Finally, some conclusions are drawn.

II. Numerical Method

Various aspects of the numerical simulation technique are now
described with the greatest emphasis placed on the near-wall
treatment. Additional information about the vortex filament
methodology can be found in the literature [4,5,9].

A. Vortex Tubes

The vortex filament method uses short, straight, vortex tubes
linked end-to-end forming filaments as the basic computational
element. Vortex tubes that stretch beyond a threshold are subdivided.
An essential aspect of the technique is the removal of vortex loops
that form naturally out of the filaments as the tubes stretch and fold in
turbulent flow regions. As first suggested by Chorin [10,11] and
demonstrated in applications [4,5,9], this is an effective means of
accommodating nonlocal intermittent energy dissipation at inertial
range scales without the expense of computing the details of viscous
dissipation at much smaller scales. At the same time, loop removal
does not hinder the tendency of the vortex filaments to combine
forming large scale structures: essentially, the phenomenon of
backscatter. Loop removal is also of considerable practical
importance, since it prevents what would ordinarily be an
exponential growth in the number of tubes produced as a byproduct
of the energy cascade to small dissipative scales caused by vortex
stretching and folding.

Vortex tubes are introduced into the calculation from vorticity
created at solid surfaces as described below. As the vortices stretch
the number of tubes increases by subdivision and in turbulent regions
their number is controlled via loop removal. It is also necessary to
introduce a downstream boundary beyond which vortices are
removed from the computation. For the present simulations, entire
filaments are removed when each of the component vortices is past
the exit plane.As has beenmentioned in other contexts [4,5], removal
of vorticity outside the computational domain can be expected to
have some effect on the flow inside due to the use of the Biot–Savart
law in computing velocities. For the present work, this means that a
region just upstream of the exit plane will be less accurate and thus
not suitable for analysis.
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B. Finite Volume and Finite Difference Scheme

To accommodate the need for DNS resolution adjacent to
solid boundaries, a fine mesh is constructed from a surface
triangularization by erecting perpendiculars at the nodal points.
M � 1 layers of thickness �y are placed on top of an initial half-
thickness layer [22], giving a total thickness of the mesh equal to
�M � 1=2��y, where y is in the direction normal to the surface and x
and z are the tangential coordinates. The flow region covered by
triangular prisms is taken to be large enough to encompass the
viscous sublayer and adjacent region of the turbulent boundary layer:
that part of the flow in which the wall-normal gradients of the
vorticity are large. In terms of wall units y� � yU�=�, where the

friction velocity U� �
�����������������������
�@ �U=@y�0�

p
, the mesh is set to lie

approximately within y� � 25 of the boundary. The precise distance
in wall units at the outer edge of the mesh will vary from place to
place in any given calculation.

An important consideration is the aspect ratio of the triangular
prisms defined as the average edge length divided by the thickness of
the prisms. In the interest of efficiency, both to minimize the number
of surface elements and to enhance the velocity computation
described below, it is advantageous to have the prisms be sheetlike in
character: that is, the aspect ratio should not be too small. On the
other hand, discretization errors will grow and resolution will be lost
if the aspect ratio is too large. Empirical tests suggest a value around
10 is acceptable so that ifM� 10, then�y� � 3 (with the half-sheet
at thewall of thickness�y� � 1:5) and�x�,�z� are no larger than
30. These dimensions are at the upper range of those required for a
DNS (most significantly, �z� should be smaller) but prove to be
adequate for most aspects of the present simulations as will be seen
below.

The vorticity field in the mesh, �i, is determined as a solution to
the vorticity transport equation:

@�i

@t
�Uj

@�i

@xj
��j

@Ui
@xj
� 1

Re
r2�i (1)

where Ui is the velocity field and Re is the Reynolds number. The
finite volume/finite difference scheme is developed based on the
properties of triangular prisms such as that shown in Fig. 1. In this,
the vorticity is taken to be constant over the prisms and equal to that at
the prism center, and the velocity is computed at the top and bottom
triangles. The velocity at each of the six nodal corners of the prism is
determined via area-weighted averaging of the velocities on the
adjacent triangles.

The convection term in Eq. (1) is approximated by first expressing
it in the equivalent conservative form,

Uj
@�i

@xj
�
@Uj�i

@xj
(2)

averaging it over the prism, and then applying the divergence
theorem, leading to

@Uj�i

@xj
� 1

VT

Z
VT

@Uj�i

@xj
dV � 1

VT

X
k

Ak�k
i �Uk

jn
k
j� (3)

where the sum is over the five faces of the prism, VT is the prism
volume and for the kth face of the prism, Ak is the area, nkj is the

outward pointing unit normal vector, and�k
i is the vorticity. On the

triangular surfaces the velocity needed in the sum is directly
available, and on the side surfaces it is computed from averaging the
four nodal values.

�k
i on the two triangular faces is determined from the value on

the upwind prism. For example, if the velocity on the top face of
the prism in Fig. 1 is up, then �k

i is taken from the prism itself.
Otherwise, it is taken from the prism lying above it. In the case of the
fluxes through the quadrilateral sides of the prism, the vorticity is
computed by a linear least square fit of the vorticities in prisms that
are contiguous to the prism on the upwind side of the surface on the
same and the immediately neighboring levels above and below, plus
the one prism on the downwind side. This is illustrated in Fig. 2 for
flow from left to right across the indicated plane.

The evaluation of the stretching term in Eq. (1) is done at the center
of the prisms so the vorticity appearing in the expression is directly
available. The computation of the velocity gradient, @Ui=@xj, is done
following an approach similar to computing the convection term. In
this case, the scalar divergence theorem is used to obtain

@Ui
@xj
� 1

VT

X
k

AkUk
i n

k
j (4)

Thevalue ofUk
i on each surface is determined the sameway as for the

convection term.
The numericalmodel for the diffusion term inEq. (1) distinguishes

between diffusion normal and parallel to the surface. In particular,
the Laplacian is first expressed in a local rectangular Cartesian
coordinate system with n in the direction normal to the solid surface
and t1 and t2 tangent to the surface, giving

r2�i �
@2�i

@n2
� @

2�i

@t21
� @

2�i

@t22
(5)

The normal diffusion term in Eq. (5) is evaluated using a standard
second-order finite difference formula using the vorticity values at
the centers of the prisms. The two tangential terms are computed by
differentiation of a polynomial determined by a second-order least-
squares fit of the vorticities of prisms located within a given radius
(say, rD) of the prism center and in the layers immediately above and

Fig. 1 Typical triangular prism: location of �i (*) and location of

computed Ui (+).

Fig. 2 Example of the prisms used in computing the vorticity

convecting through a quadrilateral surface (contained in the dashed line)

for the case when flow is from left to right.
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below the prism. The default radius is taken to satisfy rD � 1:2LT,
where LT is the average edge length of the triangles.

As for the accuracy of the discretizations, the upwind advection
scheme is nominally first-order in the normal direction and second-
order in the horizontal directions. Similarly, the approximation to the
stretching term is expected to be essentially second-order. The
formula for the Laplacian in the normal direction is second-order and
the diffusion scheme in the tangential plane is first-order. With these
approximations, the overall scheme offers stable solutions to the 3-D
vorticity equation with each separate part being consistent and
convergent under mesh refinement.

C. Time Integration

An explicit first-order-in-time Euler scheme is used for advancing
the finite volume and finite difference calculation near the wall. In
this, the time step�t is limited by Courant–Friedrichs–Lewy (CFL)
conditions in the normal and tangential directions: namely,

�t � min�CCFL�y=Vmax; CCFLLT=Umax� (6)

where CCFL is a parameter usually taken to be 0.3, Vmax is the largest
wall-normal velocity in the mesh and Umax is the largest tangential
velocity. The time step is also limited by a diffusive stability
requirement that has

�t � Re
8
L2
T (7)

In view of the relatively small size of�y in comparison to�x and�z
the condition in the normal direction in Eq. (6) tends to be the
strictest. The time step for this part of the calculation is quite small
justifying the use of simple explicit time-marching. In practice, �t
satisfying conditions such as Eqs. (6) and (7) is smaller than it would
have to be in order to compute accurate motion of the vortex tubes.
Consequently, NS time steps of the wall calculation on the mesh
(referred to as subcycles) are performed before updating the positions
of the vortex tubes. Typically, NS � 10 and the overall time step in
the advancement of the solution is�t	 � NS�t.With this larger time
step, a fourth-order Runge–Kutta scheme is used to advance the
vortex tubes in time.

D. Boundary Conditions

The vorticity components at the wall surface represent boundary
conditions for the computation of vorticity in the mesh. The two
tangential vorticity components are approximated from their
component velocity derivatives using the divergence theorem to
express their average over the half-thickness wall prism in terms of
the velocity on the prism faces and the no-slip condition on the wall.
The wall-normal vorticity component is identically zero on solid
boundaries. In the event that the local boundary element is not
aligned with the coordinate system of the calculation, then the wall
vorticity components of the latter are determined by projection from
those of the former.

To be able to solve for the vorticity in the wall mesh, it is also
necessary to have boundary conditions for the vorticity at the top
layer of prisms. Moreover, it is required to compute the amount of
vorticity that arrives at the top layer to then be turned into new vortex
tubes. Both goals are achieved by imposing a zero-net-flux condition
on the top layer, in which vorticity entering from the mesh below
exits by convection as a newvortex tube. In this there is assumed to be
no net gain of vorticity by viscous diffusion at the top sheet level,
which is tantamount to assuming that @2�i=@n

2 � 0. Moreover, as
far as the convective flux between the top two prisms is concerned,
when the flux is away from the surface, the vorticity at the top sheet is
not needed (inviewof the upwindmodel), and if theflux is toward the
surface, it is taken to be zero, since all incoming vorticity is expected
to be in the form of vortex tubes.

E. Vortex Creation

Vorticity that accumulates during a prescribed time interval (which
may be larger than �t	) in the top prism at any location due to the
viscous and convective fluxes outward from the wall, is turned into a
vortex tube as long as its magnitude is larger than a threshold (0.1 in
the present case). This aids computational efficiency by preventing
the appearance of many relatively weak vortex filaments. The
orientation of the new vortex is clear from the relative magnitudes of
the vorticity components. Its midpoint is at the center of the prism
whose vorticity it will take. The length of the new tube, jsj, where s is
the axial vector along the tube, is set by the condition that its ends just
intersect the sides of the prism. Its strength is determined via the
relation

�jsj � j�jVT (8)

which forces the far-field velocity from the new tube to match that
coming from the prism of vorticity it replaces.

F. Velocity Evaluation

Thevelocity field is computed as the sumof contributions from the
vortex elements (both sheets and tubes) as determined from
approximations to the Biot–Savart law [23] plus a potential flow
given by a boundary element scheme that enforces the non-
penetration boundary condition. The ith vortex tube contributes
according to the relation

� 1

4�

ri 
 si
jrij3

�i��jrij=�� (9)

where x1
i and x

2
i are the end points of a tube, si � x2

i � x1
i is an axial

vector, ri � x � xi, xi � �x1
i � x2

i �=2, �i is the circulation, and � is
a smoothing function [23] made necessary by the simplicity of the
approximation to the Biot–Savart integral that does not take into
account the local vortex structure. As in previous studies,

��jrij=�� � 1 � �1 � 3
2
�jrij=��3�e��jrij=��

3
(10)

where the smoothing parameter � determines the distance from the
center of the tubes within which smoothing takes place. Beyond a
distance 2:34�, �� 1, and smoothing is not present.

The velocity associated with an individual prism sheet can be
determined by the appropriate Biot–Savart integral over its
individual volume using the assumption of constant vorticity. By
construction, the prisms have a sufficiently high aspect ratio so that it
is reasonable to forgo integration in the normal direction in favor of a
simplemidpoint evaluation. This leaves integration over the triangles
themselves, which may be carried out in closed form, though the
formulas are lengthy and are not given here. It is also the case that the
expense of evaluating the exact relations is such that they are only
used for the computation of velocities in the immediate vicinity of
any given prism, specifically, within a radiusRP � 1:5LT . At further
distances, the sheets are regarded as contributing to the velocity as if
they were tubes, and for this purpose their strengths are determined
from Eq. (8). It is thus seen that apart from local formulas, the sheets
and tubes contribute similarly to the velocity field.

In the boundary element scheme a source strength is determined
on each surface triangle such that the sumof contributions produces a
potential flow satisfying the nonpenetration boundary condition. The
contribution of each triangle is determined by integration of the exact
formula, assuming constant source strengths [24]. The latter are
determined by iteration using a generalizedminimal residual method
[25].

The numerical evaluation of the velocity field is carried out using a
parallel implementation of the adaptive fast multipole method
[26,27] that replaces the nominal O�N2� expense of computing the
velocities associated with the motion of N vortices via the Biot–
Savart law, by a more practical O�N� cost. As it is currently
constituted, parallelization has been implemented fully for the CPU,
but not for memory. Generally, for problems of the scale reached in
this paper, parallelization is excellent through at least 32 processors.
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III. Numerical Problem

The code used in this study is designed for the treatment of flow
past arbitrary 3-D smooth bodies and is readily adapted to boundary
layers by applying it to the flow past the smooth plate with rounded
edges shown in Fig. 3. For sufficiently wide plates, the mean
velocitieswithin a region surrounding the center have the high degree
of two-dimensionality appropriate to a traditional boundary layer.
After some experimentation, a plate with scaled dimensions 1.5 by
2.5 in the streamwise x and spanwise z directions, respectively, and
thickness 0.05 in the y direction was adopted. Flow statistics in the
subsequent analysis are taken from themiddle region jzj � 0:25 over
which there is found to be no noticeable spanwise variation in the
mean statistics. Aswill be seen below, this computational test section
is sufficiently large to contain many independent structural features
and is comparable in size to that commonly used in grid-based
studies using spanwise periodic boundary conditions.

Smooth edges are applied to the plate by affixing semicircular
columns on all four sides and quarter-spheres at each of the corners.
The incoming flow is in the positive x directionwith unit velocity and
zero turbulence level. A Reynolds numberRe �U1L=� is assigned,
whereL andU1 are the length and velocity scales, respectively, used
in scaling the problem.

Though the plate is relatively slender, it is still thick enough to
cause some disturbance to the incoming flow that slightly delays the
appearance of canonical boundary layers in the streamwise direction.
Thinner plates were not used so as to simplify the generation of the
triangularization on the plate sides and corners and to avoid the
presence of relatively sharp edges.

The surface triangularization used as the basis for setting up the
near-wall grid is also shown in Fig. 3. This contains 62,272 triangles
with an average length dimension of 0.0114, suggesting that the
density of the triangles over the central region (0 � x � 1:5,
jzj � 0:25) is roughly equivalent to having a 44 
 132 mesh of
square grid cells. The mesh of triangular prisms is grown outward
automatically from the surface mesh. In all cases considered here, 10
levels of prisms are layered above the initial layer of half-thickness
that is adjacent to the boundary.

As mentioned previously, the thickness of the wall mesh is
determined consistent with having an aspect ratio of the prisms near
10. Having set this, then a realistic range of Reynolds number will
have �y�=2� 1:5. Based on these considerations, two thicknesses
for the boundarymesh have been considered here: namely, 0.012 and

0.016, implying that �y� 0:00126 and 0.00168, respectively. The
average aspect ratios of the prisms for the two cases are then 13.7 and
10.3. For the thinner mesh, a computation with Re � 80; 000 is
performed, and for the thicker mesh, simulations have been done
with Re � 30; 000 and 50,000. Each of the computations described
here required approximately one week on a SGI Altix 4700
supercomputer at the Pittsburgh Supercomputing Center using 16
processors.

It is within the capabilities of the code used in this study to allow
for surfaces that are constructed from several individual pieces,
referred to as patches. In fact, the plate in Fig. 3 is made up of 10
patches consisting of the top and bottom flat surfaces, the semi-
circular curved sides and the four quarter-spherical corners. Any
given surface patch is allowed by the software to be regarded as either
inviscid or viscous for the purpose of setting boundary conditions.
For the inviscid surfaces, only the wall-normal velocity condition is
imposed and not the no-slip condition, with the consequence that
such surfaces do not produce vorticity.

For the purposes of the present study, in which interest is confined
to the flow in the central region, the side curved edges and the
four corners are set to be inviscid surfaces thus saving the cost of
computing themotion of vortices created in these places. By the same
motivation, the rear curved surface at the exit plane is held to be
inviscid as well, so that the boundary layers forming upstream
separate without vorticity generation on the back rounded surface.

Computations have revealed that the status of the front curved
surface (whether viscous or inviscid) has significant consequences
for the subsequent downstream flow development. The sensitivity of
boundary-layer transition to the geometry of the leading edge is well
known [28], and, in particular, a bluff front face tends to produce
earlier transition than a more streamlined shape. In the present
circumstances, for the viscous blunt front surface a relatively quick
transition occurs downstream. In contrast, when this surface is made
inviscid it is found that transition is slower to occur and requires a
greater distance to develop along the plate. Evidently, this must
reflect the absence of vorticity produced upstreamof the beginning of
the flat surfaces. The subsequent discussion will make clear that the
nature of the transition is the same for both cases, though the
possibility of having a slower transition is useful for acquiring
converged boundary-layer statistics in the Blasius regime as will be
evident below. Results from two simulations will be considered in
this study: a computation with Re � 80; 000 using the viscous front
surface that transitions to an extensive turbulent region and a
simulation at a lower Reynolds number Re � 50; 000 using the
inviscid front curved surface that has a long transition region that
finally breaks down to turbulence only near the downstream
boundary.

IV. Numerical Results

The boundary-layer simulations begin impulsively from initially
quiescent conditions by imposing a unit velocity over the flow
domain. Figure 4 shows the time history of the number of filaments
Nf and number of vortex tubesNt for the calculation atRe � 80; 000,
which is representative of other cases as well. In this, the exit plane is
held at x� 1 until t� 0:94 when it is increased to x� 1:25. At
t� 1:51 the exit plane is moved back to the rear end of the plate at
x� 1:5 for the remainder of the computation. Test calculations
suggest that this procedure speeds up the computation by allowing
for a relative equilibrium to form upstream and then spread
downstream, compared against computing the transition to an
equilibrium everywhere at the same time.

Beginning at about t� 2:2 the number of vortex elements and
filaments stabilizes with approximately Nf � 2:7 
 106 and Nt �
2:2 
 107 signaling that global equilibrium has been reached. In this
instance, production of new tubes at the mesh surface and through
vortex stretching is in balance with vortex destruction largely
through loop removal and convection through the rear boundary. The
averagefilament contains about 8 vortex tubes in equilibrium. In fact,
the filament population contains many with one tube that are
relatively recently created and a significant number downstream

Fig. 3 Plate geometry including surface triangularization. Flow is from

left to right (x direction). The normal and spanwise directions are y and z,
respectively.
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containing hundreds of tubes. Flow statistics to be presented are
based on the data from the start of equilibrium at t� 2:2 until the end
of the computation at time step 1000, which is at t� 3:2, so that the
elapsed time for computing averages is 1 dimensionless time unit.
This proves to be mostly adequate for predicting the mean flow, but
introduces some variability in the higher order statistics such as the
Reynolds stresses.

A rendering of the complete vortexfield for 0 � x � 1:5 as viewed
from above at t� 2:2 for the higherReynolds number computation is
shown in Fig. 5 and from the side in Fig. 6. The vortex filaments in
Fig. 5 are those for which at least one of their component tubes is
within jzj � 0:25, which explains why there is some lateral spread of
the vortices beyond jzj � 0:25 in the figure. The flow is from left to
right and is seen to be initially laminar, then undergoes disturbances
leading to a clearly visible vortex structure in a transition region that
breaks down into a completely turbulent field on the right. The
alignment of vortices in the initial, upstream part of the boundary
layer is purely in the spanwise direction. Thus, despite the fact that
individual triangles produce separate vortices, the collective motion
is entirely smooth as they initially convect along the plate. It may also
be noted that there are some small regions barren of vortices. At these
locations, intense wallward sweeps of fluid appear to temporarily
brush thefilaments to the side. In actuality, there is always substantial
vorticity in the grid underlying the vortex elements that is not made
visible in the figure.

The side view shows the rapid growth of the thickness of the
boundary layer after transition. The gap between the vortices and the
wall surface near the front of the plate in Fig. 6 gives an indication of
where the outer edge of the wall mesh is located. As the flow evolves
and becomes turbulent the vortices fill up the region above the plate

surface. The figure also reveals the presence of corrugations in the
outer edge of the boundary layer that generally represent the footprint
of turbulent eddies formed from many individual filaments. This
structure is reminiscent of that seen in flow visualizations taken from
physical experiments.

In terms of the displacement thickness � at x� 0:75 halfway
across the plate, where

��
Z 1
0

�
1 �

�U

U1

�
dy (11)

the computational test section shown in Fig. 5 is approximately 110�
in length and 37� in width. In terms of the boundary-layer thickness
at the exit plane, thewidth of the region in Fig. 5 is approximatelyfive
times this scale. Generally speaking, the extent of the computational
domain is of a magnitude similar to or larger than that of other
numerical studies that have been performed. Transition in this flow is
seen to be before the midpoint of the plate so that an extensive fully
turbulent field is available for analysis.

As mentioned previously, the use of an inviscid front curved
surface and lower Reynolds number has the effect of reducing
perturbations so that transition is significantly delayed. This is
evident in the overhead view of the vortex filaments for a simulation
with Re � 50; 000 in Fig. 7 that should be contrasted with that in
Fig. 5. The transition here occupies almost the full length of the plate
so that there is just the beginnings of the turbulent field at the right
side of the field of view. The first appearance of structure in the
transition is plainly visible just beyond the midpoint of the figure at
approximately x� 0:85.

A. Flow Statistics

The finite thickness of the plate causes some substantial flow
distortion in the vicinity of the leading edge. For the Re � 50; 000
simulation this is illustrated in Fig. 8, showing the spanwise-
averaged streamwise velocity profiles at several x positions plotted
with respect to y=�. It is seen in the figure that there is an overshoot in
the streamwise velocity that gradually dies out with distance along
the plate, entirely disappearing by x� 0:675. In fact, a closer look
at the velocity field shows that there is an approximately 3%
enhancement to the freestream velocity outside of the boundary layer
that persists along the length of the plate. The overshoot at the leading
edge is much reduced for the viscous front surface and is not evident
beyond x� 0:2. Moreover, the external streamwise flow outside the
turbulent wall region in the Re � 80; 000 simulation is raised to
approximately 1.04 along the length of the plate.

Beyond x� 0:675 in Fig. 7, in which the effect of the front end
distortion is no longer felt until the clear onset of transition at
x� 0:85 it is appropriate to compare the computed solution to
that of the Blasius boundary layer. In fact, Fig. 9 containing a
comparison of the computed streamwise velocity and the Blasius
profile at x� 0:675, shows that the vortex solution does have the
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Fig. 4 Variation of Nf (lower curve) and Nt (upper curve) with time.

Fig. 5 View from above of the vortex elements for the Re � 80; 000 simulation with viscous front boundary.
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characteristics of theBlasius similarity velocityfield. In this result, an
empirically determined virtual origin of x� 0:25 is used in the

definition of the similarity variable �� y
�����������������������������
Re=�x � 0:25�

p
. As is the

case in other simulations [16], this is necessary when there is some
ambiguity inherent in the determination of a leading edge for the
boundary layer. The close agreement with the Blasius velocity field
in Fig. 9 holds up until x� 0:85, where the transitional structures
begin to dominate the physics of the flow.

Another indication of the compatibility with the Blasius boundary
layer is given in Fig. 10 comparing the computed momentum
thickness

��
Z 1
0

�U

U1

�
1 �

�U

U1

�
dy (12)

to that of the Blasius solution: namely,

�b � 0:664R�1=2e �x � 0:25�1=2 (13)

Here, the samevirtual origin is used as in Fig. 9.According to Fig. 10,
throughout the region in which the Blasius boundary layer exists the
agreement between computed and theoretical � values is excellent.
Downstream of x� 0:85 as transition is entered, there is a rapid
growth in � beyond that of the Blasius result that is indicative of the
thickening of the boundary layer that occurs during the transition to
turbulent flow.

A plot in Fig. 11 of the development of the drag coefficient, cf ,
along the plate shows the drag crisis as the flow transitions into
turbulence. Until Rex � Rex� 42; 500(corresponding to x� 0:85,
where transition begins) cf decreases somewhat, in agreement
with the Blasius boundary-layer relation cf � 1:328=

��������
Rex
p

. This is

Fig. 6 Side view of the vortex elements for the Re � 80; 000 simulation with viscous front boundary.

Fig. 7 View from above of the vortex elements in the plate flow with inviscid front boundary.
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Fig. 8 Streamwise velocity for Re � 50; 000 simulation with inviscid
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followed by a rise in the drag coefficient as the flow transitions to
turbulence. It may be noticed that the values of Rex are somewhat
lower than are ordinarily encountered in a transitioning Blasius
boundary layer. This, apparently, reflects the relative coarseness of
the vortex element representation that encourages a rapid response to
disturbances. The use of greater numbers of vortex elements of lesser
strength may counter this tendency. In any case, the fineness of
resolution provided in the present study is sufficient for the purposes
at hand.

Turning attention now to the Re � 80; 000 simulation of the
turbulent boundary layer, Fig. 12 gives a plot of the computed trend
inR� �U1�=� along the streamwise extent of the plate that is useful
for giving a context to the current simulation in comparison to other
studies. It is seen that there is rapid growth in R� (or, equivalently, �)
from the leading edge that slows at x� 0:35 rising relatively
uniformly until x� 1, where there is a rapid drop until the end of the
plate. The latter effect is a direct result of the relatively crude
downstream boundary condition and the presence of an acceleration
of the flow over the rear end of the body. The initial part of the
boundary layer is strongly affected by the rounded front end so that
acceptable data for analysis must come from the central region only.
For the purposes of the present study, the turbulent boundary layer
between x� 0:7 until the peak in R� at 1.0 is considered to be a test
section used to acquire flow statistics. Velocity data is computed on a

mesh covering this region with averaging done in the spanwise
direction at fixed x locations. For most of the following discussion,
averaging is expanded to include the data throughout the test section
by connecting values using a commonly scaled y coordinate, such as
y�, y� � y=�, or y� � y=�. Themeanvalue ofR� over the test section
is 737, and this value will be associated with the flow statistics
averaged over the same region.

A traditional semilog plot of the average streamwise velocity
scaled inwall units is shown in Fig. 13, togetherwith themeanfield at
R� � 670 computed by Spalart [12]. The slightly larger asymptotic
velocity corresponding to R� � 737 is consistent with the expected
trend. In fact, since the asymptote isU1=U� and this is related to the
local skin-friction coefficient Cf � 2�U�=U1�2, accuracy in the
latter is equivalent to accuracy in the former. Below itwill be seen that
the friction coefficient is well predicted, suggesting that the
asymptote in Fig. 13 is also accurately computed. The qualitative

agreement with a log-type law and �U� � y� trend near the wall are
also consistent with data. The fitted log law has intercept B� 5:12
and vonKármán constant k� 0:383with thefit done by least squares
over the region 30 � y� � 80. These values are within the range of
variation seen in experiments [29] and may also possibly reflect the
existence of subtle differences between the plate flow and a true zero-
pressure-gradient boundary layer.

To enable a more direct comparison with DNS the normalized

meanvelocity �U= �Umax as a function of distance scaled inwall units is
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Fig. 10 Momentum thickness in laminar boundary layer:Re � 50; 000
simulation (○) and Eq. (13) for Blasius flow (line).
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plotted in Fig. 14. There is little difference between the present and
DNS solutions from this point of view. Two other alternatives for
scaling distances in the wall-normal direction are in terms of the
displacement thickness � and the momentum thickness �. As shown
in Fig. 15 the present simulation and the DNS R� � 670 solution
compare extremely well in these cases also. Overall, the results in
these several figures give an indication of the inherent accuracy and
physicality of the vortex filament prediction of the mean velocity in
the turbulent boundary layer.

Some idea of how the present computation fits in with results from
a wider range of experiments is provided by Fig. 16, showing the
predicted friction coefficient and the shape factor, which is defined
as the ratio �=�. The results for the vortex filament calculation are
given between the position x� 0:125 and 1 over which range R�
monotonically increases from 380 to 790. In regard to Fig. 16a,
belowR� � 650 the friction coefficient angles off toward the Blasius
result generally following a trend similar to that reported in other
studies [15]. The computed results for R� > 650 are within the fully
turbulent test section 0:7 � x � 1, and for these Cf fits in closely
with data taken from avariety of sources.Much the same conclusions
can be drawn in the case of the shape factor that is well inside the
range of data from other studies in the turbulent regime above
R� � 650 and branches upward to the laminar flow result below this.

It should be noted as well that averaging over a longer time interval
would likely reduce some of the scatter in the computed results.

Results for the normal Reynolds stresses compared to DNS [12] at
R� � 670 and 1410 are shown in Fig. 17. These generally have the
correct qualitative behavior with the principal exception being the
absence of the distinctive peak in streamwise Reynolds stress near
the wall. The magnitude of the wall-normal and spanwise Reynolds
stresses are somewhat overpredicted, suggesting the need for greater
resolution in the wall mesh. In the outer flow, the Reynolds stresses
appear to have magnitudes that are more aligned with theR� � 1410
computations than the data taken from the simulation with the more
similar Reynolds number.

The predicted Reynolds shear stress uv, shown in Fig. 18a, is seen
to have properties consistent with Fig. 17, especially including an
overestimation of uv that matches that of the normal stresses. The
second figure in 18 displays the scaled Reynolds shear stress, which
is seen to have some qualitative consistency with DNS, with the
greatest distortion showing up next to the wall. The far-field trend in
this case follows that of the more appropriate of the two DNS data
sets.

Asmentioned above, it is likely that the coarseness of the near-wall
mesh (for which the dimension �z� � 40) has a primary affect on
the Reynolds stress results in Figs. 17 and 18. Other factors possibly
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influencing the comparisons are the relatively short time of the
sampling interval and the differences between the plate flow and a
zero-pressure-gradient boundary layer including the outward
acceleration at the leading edge and the vortex removal at the end
of the plate. In this regard, the downstream persistence of dis-
turbances at the front of the plate may be more of a factor for the
Reynolds stresses than the mean field itself. An additional
consideration that is known to cause some overprediction of the
Reynolds stresses [4,5] is the maximum length of the vortex tubes.
Though this is kept to the relatively small value of 0.01 in this work,
it is still larger than the magnitude of 0.005 that was recommended
in an earlier study [4]. It is interesting to note that whatever dis-
crepancies appear with the Reynolds stresses as they have been
computed thus far, it does not seem to translate into a noticeable loss
of accuracy in computing the mean velocity field. It may be surmised
that this is consistent with the observation [29] that from one
boundary-layer experiment to another, the Reynolds stresses tend to
show a wider range of variability than does the mean velocity.

B. Structural Aspects

Streamwise evolving perturbations in the vortex filament field
were seen to be a common and essential aspect of the transition as it
was observed in Figs. 5 and 7. A close-up view of two of these
structures taken from the lower left of Fig. 5 are shown in Fig. 19.
Though not shown here, such structures occur throughout the entire
spanwise width of the plate encompassing j z j� 1:25 as well as at
arbitrary times during the simulations. Similar structures are also
seen in other computations of bounded flows using the filament
scheme in which a transition region is present.

A detailed look at some aspects of the structures will now be given
including establishing a connection between these results and
previous studies. The earliest sign of transition in the simulations is a
gradual undulation into and out of the streamwise direction by the
nominally spanwise vortex filaments. A sense of this motion is most
visible in Fig. 7 just upstream of the first appearance of the
streamwise structures. A similar effect has been observed in a similar
place within transition in grid-based simulations in which vortex
lines have been reconstructed [20]. Bending of the spanwise vortex
filaments into and out of the streamwise direction clearly conforms to
the presence of alternating high- and low-speed perturbations in the
streamwise velocity associated with the boundary layer. The degree
to which vortices are perturbed forward and backward out of the
spanwise direction grows with downstream distance. Vortices in
this arrangement can induce lift up for the downstream-pointing
perturbations and a motion toward thewall for the upstream pointing
bends. With the presence of the boundary suppressing the latter it is
evident that vortex lift-up is favored, and this process results in the
initiation of the streamwise features visible in Figs. 5, 7, and 19.

Figure 20 contains end-on views of the vortex filaments intersecting
thin regions aligned in the spanwise direction at x locations 0.985
in the Re � 50; 000 simulation and 0.18 in the Re � 80; 000
simulation, shortly after the initiation of the perturbations. The
structures visible in the overhead views match exactly with those in
Fig. 20 so that the former clearly represent lifted up vortices forming
raised furrows or creases in the surface vortex field. For the larger Re
it may be noticed that the scale of the lifted regions is reduced.

The furrowlike arrangements of vortex filaments overlie low-
speed streaks in the transitioning boundary layer as may be seen in
Fig. 21, showing contours of streamwise velocity on the plane
y� 0:0076 (corresponding to y� � 22) for the same field of view as
in Fig. 7. The low-speed streaks in the former figure coincidewith the
streamwise structures in the latter and a similar result holds for the
vortex field in Fig. 5. The streaks in Fig. 21 are of a form and
separation equivalent to those observed under a relatively wide set of
circumstances [15,17,20,28,30]. In particular, the spacing of the
streaks or, equivalently, the vortex furrows is on the order of the
boundary-layer thickness (approximately 0.1 in this calculation)
and thus in agreement with general observations about the properties
of streaks in boundary layers [15,28]. It is clear from this that
the transition mode found here is of the Klebanoff type [16], which
includes low-speed streaks with their accompanying vortical
structure that breaks down into turbulence. The streaks in Fig. 21
extend downstream to well within the region in which the raised
sections of vorticity have evolved to a more or less chaotic state.

At the onset of the furrows, the lifted vorticity can be expected to
be tilted forward by the faster-moving outer flow, and this is plainly
evident in Fig. 22, which contains a 3-D view of the filaments in this
location. Associated with the raised and forward tilted filaments is
counter-rotating motion if viewed in transverse planes, as illustrated
in Fig. 23. Here, vortex filaments intersecting a narrow region around
x� 0:30 for the Re � 80; 000 simulation are superimposed upon a
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Fig. 18 Reynolds shear stress in Re � 80; 000 simulation; filament
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Fig. 19 Vortex furrows in transition and their breakdown into
turbulence.
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quiver plot of velocity vectors. This flowfield focuses slow-moving
fluid that is adjacent to the wall into a position underneath the furrow
and, as will be shown below, ejects it up through the center. It should
be noted that although there is counter-rotating motion, this is not
caused by structural elements in the form of streamwise vortices. An
observation very similar to this has been made by Sheng et al. [31]
using measured velocities taken by digital holographic microscopy
for which they calculated vortex lines in the vicinity of local stress
maxima associated with counter-rotating motion in the turbulent
flow region.

Downstream, the form of the vortex furrows changes in which the
lifted up vorticity appears to gain more autonomy from the vortex

layer covering the surface. In this progression, the cross sections of
the furrows take on a mushroom shape, as shown for both the high-
and low-Reynolds-number simulations in Fig. 24. Theviews here are
downstream of the corresponding images in Fig. 20. These pictures
have much in common with smoke visualizations [32] of the
boundary-layer structure. As before, the scale of the structures is
larger for the lower Reynolds number case. The appearance of the
mushrooms corresponds with the completion of the vortex tilting
process, leaving some of the filaments with a purely streamwise
orientation. Such filaments concentrate in the lobes of the
mushrooms and are nowdetached from thewall surface, as illustrated
in Fig. 25, showing a detailed 3-D view of the filaments composing
one of the furrows in Fig. 19, in which it has acquired the mushroom
shape. Specially highlighted in this figure are vortex tubes with a
pronounced streamwise orientation. These are seen to populate
mainly the lobes of the mushrooms as they form a true counter-
rotating pair of vortices. The latter point is made clear in Fig. 26, in
which a velocity quiver plot is overlaid on a cross section of the
filaments forming a mushroom shape. It is especially interesting to
note how the appearance of the detached streamwise vortex pair
appears to occur simultaneously with the pulling together of the sides
of what was initially the simple furrows depicted in Fig. 20 and that
has now become the narrow, almost vertical stems of vorticity being
lifted away from the wall into the mushrooms. Evidently, the
detached streamwise vortices drive the shape and evolution of the
furrow at this time. The ejected vortex filaments rising in the stem
merge into the shear layers formed across the tops of the structures.
Similar behavior appears to occur in all the furrows that were
observed in the present simulations, though there is variations from
one to another, as seen in Fig. 24, reflecting to some extent
interactions with other nearby structures.

Fig. 21 Contours of streamwise velocity on plane y� 0:0076 corresponding to y� � 22.
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The maturing of the furrows into the detached mushroom-shaped
structures appears to be accompanied by ejection of low-speed fluid
from away from thewall. This is illustrated in Figs. 27–29, providing
views of the streamwise velocity contours accompanied by pro-
jections of the local vortex filaments on cross planes intersecting
a particular furrow. In the first image, the furrow is a simple
perturbation in the spanwise vorticity field, and in the last image, a
mushroom-shaped form is present. Figure 28 is a middle point at
which the low-speedfluidfirst gathered by the furrowbegins to lift up
as the mushroom is just beginning to form. When the mushroom is
present, the low-momentum fluid is detached completely from the
wall. To a stationary observer it can be imagined that this sequence of
events has all the characteristics of the ejection process that feeds into
the Reynolds shear stress.

Asmentioned previously, it is evident from Figs. 5 and 7 that there
is a tendency in the simulations for the vortex filaments to roll up,
forming noticeable spanwise structures. Figure 7 suggests that the
process can start early in transition though there is great latitude in
where and to what extent it occurs. For example, multiple furrows
may be affected simultaneously by roll-up, but not in all cases. The
roll-upmechanism thus also contributes to the individuality bywhich
each furrow evolves into turbulence. The idea that roll-up contributes
to the presence of arch vortices is widely accepted [19,33] and is
consistent with this study. The coalescence of vortex filaments to
form a group of three such arched structures for the simulation at
Re � 50; 000 is shown in Fig. 30. These are located on the second

0.28

0.3

0.32

0.15 0.16 0.17 0.18 0.19 0.2 0.21

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x

z

y

Fig. 25 Three-dimensional view of vortex filaments forming a

mushroom shape. Dark lines are streamwise-oriented filaments.

0.15 0.16 0.17 0.18 0.19 0.2 0.21
0

0.01

0.02

0.03

0.04

0.05

0.06

y

z

Fig. 26 Vortex tubes that intersect a narrow spanwise cut at x� 0:3
with superimposed velocity vectors.

y

z

 

 

0.08 0.09 0.1 0.11 0.12 0.13
0

0.01

0.02

0.03

0.04

0.05

0.06

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 27 Streamwise velocity contours and vortex filaments at x� 0:2
for Re � 80; 000 simulation.
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Fig. 28 Streamwise velocity contours and vortex filaments at x� 0:25
for Re � 80; 000 simulation.
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Fig. 29 Streamwise velocity contours and vortex filaments at x� 0:3
for Re � 80; 000 simulation.
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streamwise perturbation from the top shown in Fig. 7 and are
representative of the vortex roll-up as it affects the furrows
throughout the field. The arched structures in Fig. 30 straddle the
furrowwith the vortex filaments in this location spreading laterally at
the edge. Further downstream, more complicated patterns can form
such as whenvortex roll-up is simultaneous with the formation of the
mushroom-shaped vortices. In the final stages of breakdown vortex
filaments in the furrows can be found to also wrap around the rolled-
up vortices. In this, as well as the general layout of the vortices, there
appears to be some qualitative affinity with the structure of free shear
layers and jets wherein systems of roller and rib vortices form.

C. Comparison with Previous Results

Investigation of the boundary-layer structure using experimental
and computational techniques has led to a number of specific
conclusions concerning its character, such as the existence of hairpin
vortices that may be compared and contrasted with the results of the
filament simulation. It is apparent from the previous discussion that
coherent vortices are identified in the filament computations via
direct observation and this may be contrasted with the common need
in grid-based simulations to incorporate a protocol for extracting
structure from the simulated results. This difference is a consequence
of the fact that the vortex filaments supply information about the
orientation and concentration of the vorticity that is not evident in the
vorticity field itself.

The commonly deployed vortex identification strategies are based
on the assumption that regions of rotational motion are synonymous
with the actual structure in the flow. Typically, such scalar fields as
the negative isosurfaces of the middle eigenvalue 	2 of the matrix
S2 �W2 (where S andW are, respectively, the symmetric and anti-
symmetric parts of the velocity gradient tensorrU) are used to mark
the physical form of structures. Negative values of 	2 correlate with
regions of low pressure that mark rotational motion [34]. In most
cases, the same kinds of structures that are identified by 	2 are also
found by the use of alternative methods [2].

It is generally understood that for the Klebanoff-type transition
seen here, low-speed streaks form within the streamwise legs of �-
shaped vortices. Further downstream the structures are commonly
described as hairpinlike vortices occurring either alone or in nested
groups forming packets. Other terms for these vortices are horseshoe
or, possibly, omega-shaped hairpins or � vortices; these names are
used interchangeably here. Further evolution of the boundary-layer
disturbances, may include the appearance of additional kinds of
structures [33], such as vortex rings, chains of ringlike vortices, and
solitonlike coherent structures. The present discussion concentrates
on the early to middle stages of transition when the structures are
most clearly observed, free of mutual interactions.

The vortex furrows that represent the dominant structural
observation of the present simulations may be connected to past
results by computing their associated 	2 isosurfaces. This result is

shown in Fig. 31, in which it is seen that for the two structures in
Fig. 19, the eigenvaluemethod identifies regions of rotationalmotion
in the form of the expected� or hairpin vortices. Note that the image
in this figure is qualitatively the same under a wide range of
numerical values used to define the isosurface. To make the
relationship of these regions with the past figures more precise,
Fig. 32 shows intersections of the isosurfaces in Fig. 31 with
spanwise planes including the velocity vector plots. Thefirst of these,
Fig. 32a,makes it clear that the rotationalmotion corresponding to	2
in this case is the same aswas seen in Fig. 23, inwhich itwas noted, as
in Fig. 22, that the filaments are not organized to form a true
streamwise vortex pair.

A similar comparison in Fig. 32b shows that the vortex pair within
the detached mushroom-shaped structure that was noted previously
in Figs. 25 and 26 corresponds to the isosurfaces selected by 	2 in
Fig. 31. This means that in this region the “legs” of the hairpin vortex
pictured in Fig. 31 are truly associated with the distribution of
streamwise vortex filaments in the raised furrow. Thus, when the
mushroom shape forms, the legs of hairpins are truly representing
vortical structures in the flow, though to be accurate they are but one
part of a more complex structure.

The vortex arches that appear to connect the leg vortices depicted
in Fig. 31 are locations at which spanwise-oriented vortex filaments
have rolled up. This connection is firmed up in Fig. 33, in which the
isosurface of constant 	2 is plotted for the same scene as was shown
in Fig. 30. It is clear that vortex arches identified by regions of
rotational motion do correspond to actual arches formed from
filaments. However, examination of the complete filament field does
not support the idea that the arches together with the two leg vortices
form a self-contained hairpinlike structure. For example, as in
Fig. 30, it cannot be said that vortex filaments forming the arches
directly reorient to form counter-rotating leg vortices. Amore precise
description appears to be that within the context of a particular vortex
furrow, the rotational motion that has the appearance of leg vortices
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Fig. 30 Close-up 3-D view of vortex filaments revealing arch vortices.

Fig. 31 Isosurfaces of the middle eigenvalue �2 ��40.
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will have a relationship with the rolled-up arch vortices that are part
of the same structure.

The view of the boundary-layer physics in the Klebanoff mode of
transition that emerges from the filament simulation may be
summarized as consisting of the appearance and subsequent
downstream development of furrowlike creases in the vortex field
over solid surfaces. Accompanying raised vortices is a tendency to
form spanwise-oriented rolled-up vortices. The late stages in the
evolution of the furrows include ejected mushroom-shaped vortices
with strong interactionswith the spanwise structures.While rotations
with the characteristics of hairpin vortices are found to be intimately
involvedwith the dynamics of the furrows they do not appear to exist
as structural entities in their own right.

The previous discussion suggests that there may be some
advantage to understanding the stability of the boundary layer and
its transition to turbulence through consideration of the properties of
a deforming vortex sheet over a solid surface. This may provide a
cohesiveness to the discussion that is difficult to achieve via analysis
of structural elements whose precise form is a matter of subjective
interpretation. To some extent, such a new approach is more in line
with the common description of shear layers and jets in terms of their
vortex behavior. It should be noted that some steps toward analyzing
the stability of boundary layers through vortex sheets have been
made previously [35]. In particular, the stability of a streamwise
corrugated vortex sheet (with some similarity to the central region
of Fig. 7) has been considered. This has predicted the appearance
of streamwise vorticity within the evolving sheet. A next stepmay be
to consider the further stability of the streamwise deformations
within the sheet that grow with downstream distance and form the
mushroom-shaped vortices. This view may be contrasted with the
current practice of directly considering the stability of the streaks
themselves [30,36].

V. Conclusions

A grid-free vortex filament scheme conjoined with a grid-based
approach in the near-wall region to accurately capture the production
of new filaments has been developed with a view toward efficiently
and accurately accounting for the physics of turbulent flow in the
context of a large eddy simulation. Vortex filaments offer a succinct
means of representing essential turbulent vortical structure away
from boundaries with minimal numerical diffusion and with the
opportunity to incorporate loop removal as a physically motivated
subgrid model for regulating energy flow between large and small
scales. The finite difference and finite volume scheme used for
solving the full viscous flow equations on a thin boundary mesh
supplies new filaments to the calculation while respecting the need
for high resolution in the wall region in which the idea of a LES is
suspect.

The simulations of transitional and turbulent boundary layers
described here suggest that beyond agreeing with prior studies in a
number of basic flow statistics, the filament methodology has the

advantage of providing a somewhat more holistic view of the
structural elements of the vorticity field than has generally been
possible with other techniques. From this has come an apparent need
to reinterpret themeaning of some of the prominent structural aspects
of transition that have been identified to date. The essential difficulty
heretofore has been the questionable assumption that regions of
rotational motion correspond to actual structure. In fact, for the
Klebanoffmode of transition that was investigated herewherein low-
speed streaks form, it was seen that the streaks are produced by raised
furrows in the vortex sheet covering the boundary layer that evolve
into a mushroom shape with downstream distance. Such vortical
objects are seen to generate a rotational field with the appearance of
hairpinvortices such as are commonly found in other studies. At their
upstream ends, the apparent legs of the hairpins are generated by
tilted filaments in the furrows. Downstream, after detachment of the
vorticity to produce the mushroom-shaped structures, streamwise
vorticity forms within the lobes of the mushrooms that may be
considered to be bona fide counter-rotating vortex pairs. Such
structure, however, is but one part of the greater whole that consists
of a narrow stem of upwelling vorticity from the wall and a broad
shear layer of spanwise vorticity across the top. Roll-up of spanwise
vorticity occurs potentially at many points along the raised vorticity.

While the structural details of the fully turbulent region were not
studied in this work, nonetheless, it is likely that much of what has
been seen for transition will apply in this context as well. For
example, just as low-speed streaks are produced by a continuous
distribution of vorticity in a furrow (compared against a concentrated
localized vortical structure) so too it may be that low-speed streaks in
the turbulentfield are the result of distributed vortical features formed
along furrowlike upwellings. According to the results of this study,
some indication of the presence of the latter may be implicit in the
observation of hairpin packets in numerical computations and
physical experiments. Beyond these considerations, there may be
advantages to investigating the stability of the boundary layer
directly in terms of the properties of the wall-layer vortex sheet. In
particular, the stability of the raised vorticity forming furrows should
be relevant to understanding the occurrence of streak breakdown
and the last stages of transition leading to turbulent flow. One may
also move beyond the mode of transition observed in this work to
speculate that processes similar to those described here also underlie
the local behavior of turbulent spots. These and similar questionswill
be pursued in further studies.
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