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ABSTRACT 

 
 

This paper presents results from several 
recent simulations of turbulent flows using the 
VorCat code. VorCat is a commercial 
implementation of the gridfree vortex method 
that is specifically designed to treat high 
Reynolds number, turbulent, incompressible 
flows of engineering interest. Computational 
elements consist of straight vortex tubes 
combined to form filaments, and finite 
thickness, thin, unstructured, triangular vortex 
sheets, several layers deep, covering solid 
surfaces. The sheet mesh provides an efficient 
vehicle for accommodating steep vorticity 
gradients in the near-wall region and permits 
accurate evaluation of viscous diffusion and 
surface vorticity production. To the extent that 

the vortex tube elements mimic the actual tube-
like vortical structures of turbulence, the 
efficiency and physical plausibility of the 
algorithm is enhanced.  A de facto “subgrid" 
model is implemented by the use of Chorin's 
hairpin removal algorithm to prevent the 
appearance of vortices of ever diminishing 
scale. New vortex elements appear at the outer 
edge of the boundary mesh during significant 
ejection events. Recent applications considered 
here include the flow in a zero-pressure 
gradient boundary layer, and the flow past a 
multi-element airfoil at angle of attack.  
 

1. INTRODUCTION 
 
 

Vortex Methods have long been regarded as 
a natural approach to take for the simulation of 
turbulent flows: they are minimally affected by 
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numerical diffusion; they provide an 
opportunity to directly model turbulent flow 
through vorticity dynamics, and, by being grid-
free, they are more readily applied than grid-
based methods to complex geometries found in 
industrial applications. Moreover, with the 
advent of the Fast Multipole Method (FMM), 
vortex methods are able to simulate flows with 
sufficient numbers of vortex elements to 
accommodate turbulence. While it is not 
necessarily realistic to expect vortex methods to 
find application as a tool for Direct Numerical 
Simulations of turbulence, they do have 
sufficient resolution to qualify at the level of a 
Large Eddy Simulation (LES).  How best to 
achieve this end is not self-evident; this paper 
considers the attributes of one particular 
approach toward developing a vortex method 
LES of turbulent flow which is the basis for the 
commercial VorCat code.  
 

The form of the vortex method adopted by 
VorCat takes advantage of a number of special 
physical properties of turbulence in order to 
gain efficiency and accuracy.  The method has 
been applied to several complex flows with the 
goal of benchmarking the level of its 
performance in diverse situations. Recently, 
computations of a zero-pressure gradient flat 
plate boundary layer has been undertaken for 
the purpose of providing stringent quantitative 
verification of the accuracy of the method in a 
standard canonical turbulent flow. Preliminary 
results from this study are given here including 
predicted mean velocity and Reynolds stresses 
and a qualitative analysis of the computed 
turbulence structure. Some results from a 
computation of the flow past a multi-element 
airfoil are also presented.  

 
2. VORCAT ALGORITHM 

 
 
The development of the VorCat code is 

constrained by the need to be efficient and 
accurate in simulating turbulent flow yet also be 
adaptable to the realities of commercial 
applications. Some guidance in how to best 
configure a vortex method for this end can be 
found by considering some of the primary 

physical properties of turbulence and how to 
best capture them numerically.   In particular, 
the restriction to Reynolds numbers in the 
turbulent range suggests that viscosity will 
affect the flow of interest only in the near-wall 
region, i.e., the viscous sublayer of turbulent 
flow, as well as spatially intermittent regions 
throughout the flow where viscous energy 
dissipation takes place.  The latter are 
characterized by the presence of highly 
stretched small-scale vorticity.    

 
To capture these particular viscous effects, 

two important attributes must be imparted to the 
numerical scheme. First of all, the viscous 
sublayer adjacent to solid surfaces needs to be 
resolved well enough to predict viscous 
diffusion of vorticity from the boundary 
surface.  Secondly, the vortex elements in the 
outer flow must be able to accommodate the 
stretching process causing the energy cascade 
to dissipation scales.  In addressing the first of 
these requirements it may be noticed that the 
region where significant molecular vorticity 
diffusion occurs is largely two-dimensional in 
character, consisting of the accumulated regions 
adjacent to solid boundaries. Clearly, high 
aspect ratio vortex sheet elements are a natural 
candidate to fill out the viscous sublayer so as 
to provide a platform upon which to compute 
vorticity diffusion.  It should also be noted that 
it is typical of engineering design analyses to 
provide information about the shapes of solid 
bodies in the form of triangularizations of the 
surface.  This implies that a natural and 
efficient representation of the near-wall region 
should be in the form of a fixed, thin, 
unstructured triangular mesh of finite thickness 
vortex sheets. For the VorCat code the sheets 
are stacked normal to the surface several layers 
deep, with a half-thickness sheet adjacent to the 
boundary, and are meant to cover the viscous 
sublayer of turbulent wall flows, i.e., 
approximately no further from the wall than y+ 
= 30. Creating such a mesh is a simple matter 
for even the most complicated geometries. The 
half-thickness sheets at the surface are assigned 
that vorticity necessary to enforce the no-slip 
condition. In particular, an image half-sheet is 
introduced so the surface sheet and its image do 
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not produce any velocity outside themselves, 
yet locally enforce the no-slip condition without 
generating a local flow normal to the solid 
surface. 
 

It is not practical to have the wall vortices 
convect since this would unnecessarily 
complicate the effort at accurately computing 
viscous diffusion normal to the surface, e.g., 
extra measures would have to be taken to make 
sure that an adequate resolution of vortices is 
maintained at all times.  To advance the 
vorticity on the mesh region, a finite volume 
numerical scheme for solving the 3D vorticity 
equation is used. If the resolution is fine 
enough, then wall-normal viscous diffusion 
with its attendant vorticity generation at the 
solid surface is determined with acceptable 
accuracy. In particular, numerical diffusion is 
kept within bounds so that flow at the desired 
Reynolds number is indeed modeled. In a 
further step to enhance accuracy, the vorticity 
on the sheets is made to be piecewise linear. 
This is used when computing the contributions 
of sheets to the velocity field. 

 
In regards to the second viscous effect, 

namely, the energy dissipation occurring 
intermittently in turbulent flow, a useful and 
generally accepted model of the process 
assumes that energy cascades to small scales 
through vortex stretching. Moreover, the fine 
scale structure of turbulence is tube-like (1), 
and stretching and folding of vortex tubes takes 
energy to small scales (2). With this picture in 
mind it is natural to choose vortex tubes as the 
primary grid-free element of the simulation. 
Moreover, unlike vortex blob representations, 
where the vorticity amplitude can become 
unbounded, a tube method is unconditionally 
stable since the circulation is conserved during 
the stretching process. 

 
In high Reynolds number flows vortex tubes 

stretch and fold until they approach the fine 
scales where viscous dissipation becomes 
important. Not only is it prohibitively expensive 
to run a vortex method calculation until such 
scales are populated, but it is not obvious how 
to correctly accommodate viscous diffusion 

once the tubes arrive at these scales. 
Fortunately, both of these pitfalls can be 
avoided by adopting Chorin's hairpin removal 
algorithm in which folded vortex pairs - as in a 
kink in a filament - are removed and the ends 
reattached (3).  A conceptual basis for this 
procedure lies in the observation that each 
folded vortex tube is primarily responsible for a 
contribution to local energy, since the far field 
velocities cancel. Removal of hairpins then 
mimics the local dissipation process, i.e., their 
energy vanishes with them. If this is done, then 
there is no need to expend great computational 
resources tracking the vortex folding process 
until the energy reaches the viscous scales and 
is dissipated. In effect, the hairpin removal 
algorithm acts like a subgrid model, and a 
vortex method incorporating it has the character 
of a LES. The unresolved scales are those that 
fall below the smallest length allowed among 
the tube segments. 

 
An additional benefit to the use of tubes is 

that they provide a direct means for 
representing the principal dynamical features of 
the near-wall region in bounded turbulent 
flows, i.e., the quasi-streamwise vortices which 
control the momentum exchange near 
boundaries associated with the Reynolds shear 
stress. It may be imagined that a tube method is 
the optimal means of representing the wall layer 
dynamics controlled by tubes. As will be 
illustrated below, tubes also show a significant 
tendency to combine together forming other 
kinds of vortical structures that are routinely 
observed in turbulent flows. 

 
The dynamics of vortex tubes is contained in 

the movement of their end points and the 
application of rules such as hairpin removal and 
the subdivision of segments if they become too 
long. Other rules govern their creation at the 
outermost sheet level of the wall grid. Vorticity 
produced at the wall in satisfaction of the no-
slip condition diffuses and convects through the 
mesh. To mimic the idea that new vorticity is 
produced in the outer flow primarily during 
significant ejection events from the near wall 
region, new vortex tubes are made to appear at 
the top mesh level only when the vorticity at 
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this location exceeds a threshold. In practical 
terms, this helps limit the amount of new tubes 
in the calculation by restricting them to those 
that are the most significant in the sense of 
containing the most energy. A description of 
these and other facets of the method may be 
found in some earlier reports, e.g., (4,5,6). 
 

3. BOUNDARY LAYER 
 
 

As a rigorous test of the VorCat code a 
canonical zero-pressure-gradient flat plate 
boundary layer has been simulated.  The plate 
used in the simulation has a total length of 2 
and a span length of 0.28. The surface is 
resolved by approximately 5000 triangles. In 
the simulations, 4 periodic images are used to 
enforce periodicity conditions in the spanwise 
direction. The flow is tripped by a bump placed 
at x=0.1 with height 0.003. Computed flow 
statistics are taken at x=1.1 which corresponds 
to a Reynolds number of 200,000 based on the 
distance from the trip. 
 
Physical Properties 
 

The boundary layer trip is observed to have 
an effect on the computed solution that agrees 
with current understanding of the physics of 
boundary layer transition and its subsequent 
development into a turbulent state. This is 
illustrated in Figs. 1 and 2 showing snapshots of 
the computed vortex element population from 
the top and side at a sequence of increasing 
times. Figures 3 and 4 give a magnified view of 
the flow from each of these perspectives. 
Besides the vorticity in the tubes, it should be 
remarked that there is considerable vorticity in 
the sheet mesh that is not depicted in these 
figures. Upstream of the boundary layer trip, 
there are a relatively small number of purely 
spanwise vortices which are typical of a laminar 
boundary layer.  The flow in this region is 
clearly stable throughout the calculation, e.g., 
its character is unchanged in time, and the 
vortex elements have low vorticity amplitude. 

 
Immediately downstream of the bump the 

flow remains laminar for a short distance, but is 

soon followed by strong transition into a highly 
perturbed state (where the elements are various 
shades of purple and magenta). This behavior is 
strongly reminiscent of transition in which 2D 
Tollmein-Schlichting waves first appear, 
followed by a focusing of their spanwise 
vorticity, which subsequently undergoes 
instability causing the appearance of 
streamwise vorticity and finally turbulence (7). 
Evidently, the effect of the bump is to inject 
vorticity outwards from the wall surface, and by 
so doing, accelerate the appearance of the 
transition process. A close-up view of the 
vortex elements in the latter part of the 
transition region shown in Fig. 5, indicates that 
reorientation of spanwise vorticity to the 
streamwise direction is associated with the 
presence of alternating regions of faster and 
slower streamwise motions, i.e., the beginnings 
of the streaky structure which characterizes 
turbulent boundary layers, and which is found 
to underlie the fully turbulent regions of the 
simulation.  

 
The side views in Figs. 2 and 4 reveal a 

thickening of the boundary layer in the 
transition region and the generation of wall-
normal vorticity.  Further downstream the flow 
develops many structural features in the form of 
coherent vortices. The side images show the 
characteristic crumpled outer edge pattern of 
the boundary layer formed from individual 
large-scale structures. A detail of one such 
mushroom shaped object is shown in Fig. 6. Its 
appearance is identical to similar objects which 
are sometimes described as the “ typical eddies" 
of the turbulent boundary layer (7). It is also 
noteworthy that the appearance of large-scale 
vortical structures in the calculation is as the 
end result of many individual vortex filaments 
undergoing collective organization into larger 
structures, i.e., they form naturally in the 
calculation, not by outside intervention. 

 
The pictures in Figs. 1 and 2 show the spread 

of turbulence downstream as the flow evolves. 
This is clear evidence that the appearance of 
turbulence at this Reynolds number is attributed 
to the boundary layer trip. Another interesting 
aspect of these figures is the fingering pattern at 
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the leading edge of the turbulent front as the 
vortices convect downstream. Once the 
turbulent field passes a given point, then the 
flow thereafter remains in a state of local 
turbulence regeneration. The number of 
vortices in the calculation grows with time until 
vortex elements reach the downstream end of 
the domain and are eliminated from the 
computation. Fig. 7 shows the number of 
vortices in the calculation as a function of time, 
as well as the time history of the time step. 
After t ≈ 0.75, the number of vortex elements 
increases more rapidly and the flow transitions 
from the initial laminar state to turbulent flow. 
The numerical time-step reaches a quasi-
equilibrium value of about 0.0004, while the 
number of vortex elements starts to level off 
after t ≈ 2. Note that the total number of vortex 
elements consists of the sum of vortex sheets 
and vortex tubes, where the number of vortex 
sheets is constant. The number of vortices 
indicated in the figure is for just the central 
panel of the foil and does not include the image 
panels. Thus, towards the end of this calculation 
there are approximately 1.5 million vortex 
elements contributing to the velocity field in the 
central region.  

 
Turbulence statistics 
 

A rigorous assessment of the physical 
correctness of the computed boundary layer 
depends on comparing average statistics of the 
predicted velocity field against measured 
values. For this purpose, the velocity field at the 
location x = 1.1, corresponding to Rex = U∞ x/ ν 
= 200,000 is considered. It is evident from the 
previous discussion that at any fixed x location 
it is necessary to wait until after the turbulent 
front has passed before collecting data with 
which to evaluate the turbulence statistics. At 
the time of this writing, the boundary layer 
simulation has been computed for 
approximately 4000 time steps with an elapsed 
time of 2 dimensionless units.  The turbulent 
flow field reached the location x = 1.1 
sometime after t = 1. Consequently, for the 
purpose of computing flow statistics, data in the 
time interval 1.5 < t < 2 spaced at intervals of 
∆t = .05 is used.  

The velocity data for computing statistics is 
obtained at 15 equally spaced spanwise 
locations at x = 1.1. The mean wall shear stress 
at this location can be used to calculate a 
friction velocity, U* and with it convert all 
quantities to wall units, e.g., y+ = y U*/�  and t+ 
= t (U*)2/� . A conversion of time to t+ units 
reveals that the elapsed time interval over 
which the averaging has been done is 
approximately ∆t+ = 200, which is much 
smaller than previous DNS studies have shown 
to be necessary for fully converged velocity and 
Reynolds stress statistics. Thus, converged 
statistics are not yet available for this 
calculation and will have to be obtained later, 
after an opportunity arises to run the solution 
for a longer time period. Note that the 
simulation to time 2 has taken approximately 
one week of CPU time for a calculation using 
64 processors.  

 
In terms of wall units, it is also found that 

the typical transverse length of the sheet mesh 
is ∆z+ ≈ 80. This is approximately 4 times 
larger than one would expect to be necessary to 
accurately represent the correct scale of the wall 
region structure. As a consequence, for the 
present simulation vortices are not placed into 
the flow at a fine enough scale to fully resolve 
the smallest scale behavior of the low speed 
streaks and their attendant vortices.  Clearly, the 
results of the previous section suggest that this 
limitation is not enough to deprive the 
calculation of physical legitimacy, but it can be 
expected to have some effect on the mean 
velocity statistics. For this reason new 
calculations of the boundary layer will be done 
with a revised and improved mesh. Despite 
these shortcomings, it will be seen here that the 
predicted results give a strong signal that the 
physicality of the boundary layer simulation 
shown in the previous section is also reflected 
in the quantitative statistics.  
 

First consider the mean velocity profile, U+ 
displayed in Fig. 8. Also plotted is the standard 
log law result U+ = (1/.41) log(y+) + 5, the near 
wall relation U+ = y+, and the Spalart mean 
velocity DNS solution for R�  = 670 (8). The 
latter is appropriate since a calculation yields 



 6 

that R�  ≈ 575 for the VorCat simulated 
boundary layer at x = 1.1. It may be noted from 
the figure that the computed U+ field displays a 
log law behavior with the correct slope, and a 
slight overestimation of the magnitude. It is 
most likely (a conjecture we hope to 
conclusively establish in the near future) that 
such quantitative discrepancies are the result of 
the limited sheet mesh resolution of the current 
simulation and the lack of sufficient time 
averaging. It should also be pointed out that 
other sources of error have yet to be fully 
identified, e.g., parametric studies of the effect 
of numerical parameters such as tube length 
have not been completed. Moreover, a number 
of enhancements to the computation of the 
velocity from the wall sheets are scheduled to 
be implemented in the near future.  

 
A plot of the normal Reynolds stresses is 

shown in Figure 9. While there are some 
quantitative differences with the DNS solution, 
the degree of agreement is quite significant, 
particularly in view of the aforementioned 
resolution problem. It is clear that the 
magnitude of the individual stresses are well 
accounted for in the simulation. This means that 
the essential anisotropy of the turbulent 
boundary layer is realistically modeled. This 
result is all the more significant when it is 
realized that the Reynolds stress statistics are 
associated with the chaotic motion and 
structures in the previously described 
visualizations of the flow field. The most 
significant quantitative discrepancies in Fig. 9 
are the underestimation of vrms and the over-
prediction of wrms close to the wall surface.  

 
The collective behavior of the normal 

stresses is revealed in the plot of turbulent 
kinetic energy shown in Fig. 10. As before, the 
results are suggestive of the effectiveness of the 
vortex method calculation.  Finally, the 
prediction of Reynolds shear stress is also 
indicated in Fig. 10. The quantitative accuracy 
is similar to that in the normal stresses. It is 
significant that a definite shear stress of the 
correct sign and magnitude appears as part of 
the vortex method solution. This confirms the 
presence of a correct physical organization to 

the flow, i.e., the Reynolds stress and its 
attendant momentum exchange are not likely to 
be correctly predicted without capturing the 
true physical structures and their dynamics (9). 

 
An examination of the statistics further 

downstream shows the development of the 
same trends in the data as at x = 1.1. For 
example, a negative Reynolds shear stress 
appears at any location once the turbulence 
passes that point. Of course, resolution 
continues to decrease with downstream 
distance, a property of boundary layers that will 
be addressed in subsequent computations. One 
other significant point is that the use of the 
Biot-Savart law in computing velocities is 
incompatible with imposing a simplified exit 
plane boundary condition. In fact, the absence 
of vorticity downstream of the plate end, affects 
the velocity on the nearby upstream part of the 
plate (10). The consequence is a tendency to 
exaggerate the streamwise velocities. The 
implication of this for the present calculation is 
that the boundary layer beyond approximately 
1.5 experiences some acceleration that distorts 
the statistics.  The data discussed here, at x = 
1.1 is safely buffered from this part of the flow 
field.  

 
4. MULTI-ELEMENT FOIL  
 
 

Another application of VorCat receiving 
considerable attention at the present time is that 
of the flow past a multi-element airfoil 
(30P30N). To match the conditions of 
experimental data (11), the Reynolds number is 
taken to be 9 million and flow at angles of 
attack �  = 8o and �  = 19o are considered.  The 
span of the foil is 1.08 and 2 periodic images 
are placed on either side of the main section in 
order to enable satisfaction of the periodicity 
boundary condition in the Biot-Savart 
calculation of velocities. In view of the high 
Reynolds number, the sheet mesh is very thin 
and thus requires a small time step to satisfy the 
CFL condition. Since the vortex tubes 
themselves do not have a similar stability 
requirement, their velocities can be updated 
according to a larger time step than that used 
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for advancing the vorticity field in the 
unstructured mesh. The resulting gain in 
efficiency from this technique brings the 
calculation of the airfoil flow to a matter of 
weeks instead of months. Thus, a typical foil 
calculation until t = 10 with 

�
t = 0.001 will take 

2-3 weeks and have millions of vortices. At the 
present time, simulations of the multi-element 
foil have been carried out up to time t ≈ 2.2 for 
both �  = 8o and �  = 19o angles of attack.  

 
The time-step and the number of vortex 

elements that have been generated during the 
airfoil calculation are shown in Fig. 11 for the 
case with �  = 19o. After about time t ≈ 1.9, the 
increase in the number of vortex elements 
steepens and the flow transitions from the initial 
laminar state to a turbulent one. The vortex 
sheet time-step drops to a value of 
approximately 0.00003, while the vortex 
filament time-step is set to 0.0005.  

 
A visualization of the vortex element 

distribution on the 30P30N foil at time t ≈ 2 and 
angle of attack �  = 19o is displayed in Fig. 12 
from a perspective above and below the airfoil. 
Vortex filaments are colored according to their 
circulation strength: red being the strongest and 
blue the weakest. Across the top of the main 
airfoil section the flow appears to be going 
through transition from a laminar state after 
entering through the forward slot. It is seen that 
there is increasing levels of streamwise 
vorticity. At the time in the image, the flow 
developing on the top surface is just shy of 
reaching the high vorticity sheet that is 
shedding off the sharp trailing edge of the main 
section. The figures suggest that the flow 
travels above and below the rear flap in a 
turbulent state. 

 
The relatively short time since the 

development of turbulence in the calculation 
completed thus far is evident in the 
visualizations in Fig. 12.  Clearly, it is too early 
to make comprehensive comparisons of the 
predicted turbulence statistics against 
experimental data. Nevertheless, some idea of 
the trend of the VorCat solution can be gleaned 
by comparing its prediction of the distribution 

of the pressure coefficient Cp for �  = 8o vs. 
experimental data, as shown in Fig. 13. The 
qualitative agreement between curves is 
encouraging and suggests that the VorCat 
solution is on track toward capturing this 
complex flow field.  

 
5. CONCLUSIONS  
 

 
VorCat represents one approach toward 

designing a vortex method for the specific goal 
of simulating turbulent flow. Consideration of 
some of the fundamental physical processes of 
turbulence justifies the particular use of vortex 
sheets and tubes in the VorCat algorithm. Some 
examples of the results of recent efforts at 
validating VorCat have been described here. 
Both the boundary layer and airfoil calculations 
appear to be on course toward establishing the 
qualitative and quantitative accuracy of the 
VorCat scheme. Final results of these studies 
should be reached in the near future. Extensions 
of this work to 3D wings or foils with partial 
flaps are anticipated.  

 
With the recent award of a NIST ATP grant 

to VorCat, Inc., a major component of future 
work will be in gaining a further order of 
magnitude speedup in the FMM solver and in 
extending VorCat to include the effects of heat 
transfer, compressibility and combustion.  
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FIGURES 

 
Fig. 1. Top view of the vortex filament field evolution in time (from top to bottom) for the 
flat-plate boundary layer at Re = 200,000. 

 

 
Fig. 2. Side view of the vortex filament field evolution in time (from top to bottom) for the 
flat-plate boundary layer at Re = 200,000. 
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Fig. 3. Top view of the vortex filament field for the flat-plate boundary layer at Re = 200,000 
 
 
 

 

 
Fig. 4. Side view of the vortex filament field for the flat-plate boundary layer at Re = 200,000 
 
 
 

 
 
 
Fig. 5. Reorientation of spanwise vorticity in regions of high and low speed fluid in late transition 

of the turbulent boundary layer.  
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Fig. 6.Detail of “ typical eddy”  in the form of a mushroom-shaped vortex in the turbulent boundary 

layer. 
 
 

 
 

Fig. 7. Time evolution of the time-step and the number of vortex elements for the flat-plate 
boundary layer at Re =200,000. 
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Fig. 8. Mean velocity at x = 1.1. Solid line is DNS (8); symbol is VorCat prediction. 
 
 
 
 

 
Fig. 9. Normal stresses at x = 1.1. Solid line is DNS (8); symbol is VorCat prediction. 
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Fig. 10. Turbulent kinetic energy and Reynolds shear stress at x = 1.1. Solid line is DNS (8); 

symbol is VorCat prediction. 
 
 

 
 
 
 
Fig. 11. Time variation of the time step and the number of vortex elements for the 30P30N foil at 

Re= 9 million and �  = 19o. 
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Fig. 12. Top and bottom views of the vortex filament field at t ≈ 2 for the 30P30N foil at Re = 9 

million and �  = 19o. 

 
Fig. 13. The pressure coefficient distribution on the 30P30N foil at Re = 9 million and �  = 8o. 

Solid circles correspond to experimental data; open squares correspond to VorCat predictions 
at time t ≈ 2. 

 


