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ABSTRACT 
The advent of fast numerical solutions to the N-body 

problem such as the Fast Multipole Method has raised the 
possibility of vortex method simulations of fluid flow using 
millions of vortex elements. This resolution is sufficient to 
make credible large eddy simulations of turbulent flow via 
vortex methods. This paper presents a particular hybrid 
formulation of such a scheme in which freely convecting vortex 
tube elements are used in conjunction with a thin, fine grid of 
triangular prisms adjacent to solid surfaces. The latter provides 
an efficient and accurate representation of the critical vortex 
generation process that plays a large part in the dynamics of 
turbulent flow. Some examples of the application of the 
methodology to boundary layer and bluff body flows arr given.  

1. INTRODUCTION 
The accuracy of numerical simulation schemes for turbulent 

flow depends in large measure on satisfactorily resolving 
critical flow processes involving the development and 
dynamics of vortices. This is particularly important near solid 
boundaries where vorticity production for the whole flow 
usually takes place and where energetic vortical structures of 
many scales are produced that generate Reynolds shear stress 
and otherwise control the flow physics.  

It is the hallmark of Direct Numerical Simulation (DNS) 
that the computed turbulent field is resolved completely in the 
sense that all vortical features are resolved free of the smearing 
that would occur if the numerical grid were not fine enough to 
prevent numerical diffusion. Traditional grid-based Large Eddy 
Simulation (LES) schemes, on the other hand, use subgrid-scale 
models for the purpose of capturing the gross effect on the 
resolved turbulence scales of largely unseen vortical motions. 
How this is done near boundaries is particularly important and a 
major factor in whether the calculations succeed or fail. For 
reasons unrelated to the phenomenon that is being modelled, 
(e.g. numerical stability) subgrid models tend to be diffusive 
and there is much evidence to suggest that this leads to serious 
distortions of the underlying turbulence. For example, the 
smoothing away of shed vortices and the inability to fully 
capture backscatter. 

Vortex methods avoid the problem of grid induced 
numerical diffusion by eliminating the grid altogether (Puckett, 
1993). Such Lagrangian methods use translating and interacting 
vortical elements to represent the flow field, and by so doing 
sharp features such as intense vortices and shear layers remain 
sharp as they evolve over time. This is true regardless of 
whether resolution is sufficient to encompass all important 
scales of motion. Moreover, nothing in the approach prevents 
the occurrence of backscatter if it should be locally present in 
the flow. Other advantages of vortex methods are their inherent 
efficiency in modelling vortical objects and their need to cover 
just the support of the vorticity field and not the often larger 
support of the velocity field.  

That the near-wall region must be treated carefully in 
gridbased LES also holds true for vortex methods. In fact, since 
the vortical elements in a vortex method originate at boundaries 
it is particularly important to correctly compute the degree and 
nature of vorticity production at solid surfaces. For turbulent 
flow at high Reynolds number large vorticity gradients 
associated with vorticity production at the surface are confined 
to 0 ≤ y+ ≤ 30. An important point is that while this region may 
be very thin, it still has structure that needs to be resolved in 
order to accurately estimate the rate of production of vorticity 
and the appearance of new vortices. This means that the 
complete physics of the vorticity field including viscous 
vorticity diffusion, convection and stretching must be computed 
accurately next to boundaries even in a vortex method.  

This paper describes the development and application of a 
vortex method that is specifically designed for turbulent flow 
simulation. In this, vortex tubes are taken as the principal 
gridfree element, but these are supplemented by sheet-like 
triangular prism vortices covering the viscous sublayer adjacent 
to solid boundaries in a fixed arrangement several layers deep. 
Upon the mesh the full 3D vorticity equation is solved by a 
finite volume scheme with new vortex tube elements appearing 
at the outer edge of the wall mesh. The attention paid to the 
near-wall flow reflects the necessities of the physics and may 
be contrasted with vortex methods that model the turbulent 
boundary layer via a single layer of sheets. The present hybrid 
scheme aims to provide accuracy and efficiency in resolving 
the near wall flow without eliminating the essentially gridfree 
character of the approach. 



    

The following contains a brief introduction to the gridfree 
algorithm followed by results of its application to turbulent 
boundary layer and bluff body flows.  

2. NUMERICAL ALGORITHM 
2.1 Tubes 
The vortex tube elements used in the method are straight 

segments defined by the positions of their end points and their 
circulation, Γ. By convecting the end points according to the 
local velocity, the changes in length and orientation of the tubes 
provide an approximation to the vortex stretching term in the 
vorticity equation. Since the focus of the method is on turbulent 
flow, the approximation is made that Kelvin’s theorem can be 
applied to justify keeping the circulation of the tubes constant 
in time. Explicit modeling of viscous diffusion is included for 
the flow adjacent to the boundary in the context of the vortex 
sheet prisms.  

The vortex tubes have a tendency to increase in length as 
they evolve. Tubes longer than a threshold are subdivided. 
Moreover, a bound is placed on Γ ∆s where ∆s is the length of a 
tube with the consequence that vortices with large circulation 
are allowed to subdivide more quickly than weaker vortices. 
This step is found to enhance the accuracy of the discretization 
since Γ ∆s appears in the Biot-Savart law for the velocities 
produced by the tubes. As time passes, individual vortex tubes 
lengthen into chains of tubes that form filaments that mimic 
elongated vortices in turbulent flow. Very often multiple 
filaments are seen to form even larger organized structures. The 
allowable length of tubes for the most part establishes the 
resolution of the simulation. Usually this length is tied to the 
average size of the triangular elements used to represent solid 
surfaces.  

New vortex tubes are created at the top sheet mesh with 
circulation determined by the local vorticity that has convected 
and diffused from the surface. Under turbulent flow conditions, 
the tubes stretch and fold as part of the fundamental mechanism 
of the cascade by which energy passes from large to small 
scales (Bernard and Wallace, 2002; Chorin, 1994). In practical 
terms the number of tubes grows rapidly so that, in fact, a de 
facto subgrid scale model is needed to limit the number of tubes. 
Removal of acutely folded tubes eliminates local energy that 
may be viewed as destined to ultimately be dissipated by 
viscosity at smaller scales. This is the hairpin removal 
procedure developed by Chorin (1993). In a similar vein, 
volume conservation implies that the implied radii of the tubes 
diminish as they stretch and subdivide. When a particular tube 
has divided through many generations, it can be expected that 
the dissipation scale has been reached and there is justification 
for removing such vortices from the calculation. 

2.2 Prisms 
Solid surfaces are represented via triangularizations.  By 

projecting normally from the triangle nodes a thin grid of 
triangular prism sheets is erected. The number of layers is 
generally taken to be 11, and the thickness of the sheets is more 
or less determined for a given Reynolds number by the desire to 
cover the region out to y+ = 30. As the Reynolds number 
increases, the horizontal density of triangles needs to increase if 
the aspect ratio of the sheets is not to get large. In fact, keeping 
the aspect ratio near ten is a beneficial goal since it allows for a 
reasonably fine coverage of sheets while still retaining the 
efficiency implicit in a sheet-like representation of the high 
vorticity next to surfaces.  Moreover, the number of prisms 
near the wall, according to classical scaling arguments, grows 
with Reynolds number proportional to Re

3/2 since the number of 
layers is fixed, so there is significant potential for efficiency in 
accommodating high Reynolds number flows.   

Piecewise constant vorticity is assumed over the prisms and 
a finite volume scheme is applied to the 3D viscous vorticity 
equation to update vorticity values in time. The non-slip 
boundary condition gives the surface vorticity from the 
computed velocities using a finite difference approximation that 
is accurate if the sheet layer is thin enough. Typically this 
requires ∆y+ ≈ 3 if 11 layers are to extend to y+ = 30. If the 
triangles have aspect ratio 10 then the spanwise spacing of 
triangles is near 30 which is sufficient to capture the physical 
spacing of coherent vortices near a solid wall.   

In the finite volume scheme, the convection term in 
conservative form is rewritten via the divergence theorem as a 
sum of fluxes through the five sides of the prisms. The vorticity 
on the triangular faces is from the upwind prism while linear 
least square fitting of upwind vorticity is used to compute 
vorticity on the quadrilateral faces. The stretching term uses the 
vorticity at the center of the prisms. Velocity gradients are 
computed using the scalar divergence theorem similar to the 
convection term. The evaluation of the diffusion term 
distinguishes between diffusion normal and parallel to the 
surface. For the former a standard second order finite difference 
formula is used while the latter is evaluated by differentiation 
of a polynomial determined by a second order least-square fit of 
the vorticities of prisms located within a given radius of the 
prism center and in the layers immediately above and below the 
prism. 

At the outer level of the mesh it is necessary to both supply 
a boundary condition for the finite volume scheme as well as 
calculate the amount of vorticity to be put into new tubes. The 
former is satisfied by solving the finite volume equations only 
up to the second to last sheet level and assuming the viscous 
flux in the wall normal direction to be constant over this sheet. 
In this, when the convective flux is toward the surface the 
vorticity in the top sheet is taken to be zero since it may be 
assumed that the incoming vorticity is in the form of vortex 
tubes. The total vorticity flux due to convection and diffusion 
into the top sheet level supplies the vorticity that is put into new 
tubes. The orientation of the new tube corresponds to that of the 
vorticity, its length is determined by the dimensions of the 
prism and its strength is such as to guarantee far field 
consistency with the velocity field produced by the prism.  

 Time integration on the mesh is via an explicit scheme 
with time step, ∆t, limited by CFL conditions in the normal and 
tangential directions as well as a diffusive stability requirement. 
In practice ∆t satisfying these conditions is smaller than needed 
for accurate computation of the tube motion. Consequently, 
several iterations of the finite volume scheme are performed 
before updating the positions of the vortex tubes. The 
contribution of the vortex tubes to the velocities in the mesh is 
held fixed during the sub-iterations. 

The finite volume algorithm described here is found to offer 
stable solutions to the 3D vorticity equation over a wide range 
of flows that have been treated thus far. Moreover, tests have 
shown each separate part of the numerical discretization to be 
consistent and convergent under mesh refinement.    
 

2.3 Velocity Evaluation 
The velocity field is recovered by summing over individual 

contributions from vortex tubes and prisms as given by the 
appropriate form of the Biot-Savart law plus a potential flow 
that insures satisfaction of the non-penetration condition at 
solid surfaces. The latter is determined using a boundary 
element method over the triangles used to describe the fixed 
surfaces. In the case of tubes, following the common procedure 
for vortex methods, a smoothing function is used to 
desingularize the Biot-Savart kernel. This is not necessary for 
the prisms since the exact 3D integration is done in this case. 



    

The far field contribution from the prisms is done using the 
standard Biot-Savart kernel.  

A parallel implementation of the Fast Multipole Method 
(FMM) (Greengard and Rokhlin, 1987) is used to evaluate all 
except local contributions of tubes and prisms to the velocity 
field.  Local smoothing of the tube formula prevents growing 
the oct-tree in the FMM to optimal depth, but this is efficiently 
compensated for by use of a “middleman" scheme 
incorporating 3D linear interpolation over a mesh grown 
through two further subdivisions. Local sheet contributions are 
done by direct evaluation of the exact formulas.  

The FMM reduces the nominal O(N2) cost of velocity 
evaluation for N vortices to a more practical O(N log(N)) or 
even O(N) calculation. With 4 million vortices, excellent 
parallel scalability is maintained through at least 16 processors, 
with scalability increasing as the number of vortices increases. 
In a typical result, a calculation with 4 million vortices on 64 
processors takes under 1 minute of CPU time. This is sufficient 
to enable useful simulations of complex flows in a reasonable 
time.    

3. NUMERICAL RESULTS 
Validation of the gridfree methodology has focused on 

comparing quantitative and qualitative predictions of a variety 
of flows against physical experiments and DNS. A high priority 
has been the turbulent boundary layer whose mean properties 
such as velocities and Reynolds stress are well documented. 
Among other flows of interest are the spatially growing mixing 
layer, the flow past a sphere and finite cylinder, and generic 
mini-van flows used in the automobile industry, namely, the 
Ahmed body shown in Fig. 1 (Ahmed, 1984) and the Morel 
body (Morel, 1978).  

 

Figure 1.  Ahmed body showing surface triangularization. 

Among the options for studying the turbulent boundary 
layer, it has proven easiest to compute the flow past 
three-dimensional objects having flat surfaces such as a 
finite-thickness plate with rounded edges and the top and 
bottom surfaces of the Ahmed and Morel bodies. Such 
calculations do not require the imposition of spanwise 
periodicity and downstream boundary conditions as would be 
the case, for example, in computing the flow past an infinite flat 
plate. In fact, to enforce periodicity when the velocity is 
computed from vorticity using the Biot-Savart law, requires 
adding many periodic spanwise images of the vortex elements 
in order to recreate the complete vorticity field that influences 
the velocity in the computational domain. Special care also has 
to be taken to compensate for the contributions to the velocity 
from vorticity that has convected past the downstream 
boundary.  

In the current version of the code, typical calculation with 
the vortex method using 16 or 32 processors on parallel 
computers can be completed in a matter of a few days so long 
as the number of surface triangles is kept below 40,000 

(implying ≈ 400,000 prisms) and the number of tubes is no 
more than several million. With these constraints on resolution, 
only relatively modest Reynolds numbers can be considered if 
the surface mesh is to be kept near optimal conditions. More 
specifically, calculations at Reynolds numbers above O(105) 
can be expected to be significantly under-resolved next to the 
boundary if only 40,000 surface triangles are used. For example, 
such computations tend to have grids with aspect ratio near 20, 
thickness ∆y+ ≈ 6 and spanwise spacing on the order of 100 in 
wall units. 
  

3.1 Velocity Statistics 
Velocity statistics for several flows are given here at various 

Reynolds numbers up to 500,000. The higher Reynolds number 
calculations, though they have fairly coarse meshes, are 
performed to enable more realistic comparisons with physical 
experiments. For example, experimental measurements of the 
Ahmed body flow are at Re = 2,784,000 based on body length. 
Fig. 2 is a comparison of the mean velocity scaled in wall 
coordinates as computed from the flat surfaces of a Morel body 
with square back at Re = 360,000 compared to DNS (Spalart, 
1988) and the classic scaling laws. For the DNS, Rθ = 500 
while for the present simulation Rθ = 622. The accuracy of the 
calculation is apparent as well as its consistency with the log 
law behavior. For this simulation the average spanwise mesh 
spacing is ∆z+ = 107.2. Calculations at coarser meshes than this 
show degradation in accuracy.  

 

Figure 2. +U at Re=360,000. ◊, DNS (Spalart, 1988); , 

gridfree scheme; - -, +U = y+ and +U  = 1/0.41 log(y+) + 5. 

The normal Reynolds stresses for the boundary layer at Re 
= 360,000, shown in Fig. 3, are somewhat over predicted. This 
trend is at least partly attributable to the coarseness of the wall 
mesh, since with better resolution the normal Reynolds stresses 
are better predicted. For example Figs. 4 and 5 show Reynolds 
stress and turbulent kinetic energy predictions for a better 
resolved simulation at Re = 64,800 using the finite flat plate 
with rounded edges. Here the calculation has the very low value 
of Rθ = 146 while the DNS is at Rθ = 300. The Reynolds shear 
stress is well predicted while the kinetic energy has the right 
amplitude but peaks further from the wall. It may also be 
noticed that the normal stresses are somewhat too isotropic, a 
tendency that is also present at the higher Reynolds number. 
The disagreements with DNS shown in Figs. 4 and 5 can be 
explained by a number of factors including lingering coarseness 
in the wall mesh, the differences between the finite and infinite 
plates and the small simulation Reynolds number that is below 



    

the minimum for a log law. Another possibility that is being 
investigated is a local effect of the changeover from sheet-like 
to tube-like behavior when new vortex tubes are created.  

Measurements of velocity components and other statistics 
for the Ahmed body flow are well documented (Lienhart, et al., 
2000) and provide another avenue with which to quantitatively 
check predictions. Results are given here for a calculation at Re 
= 500,000 containing an inviscid ground plane in the same 
position as the floor in experiments. The streamwise velocity is 
compared with experiments in Fig. 6 for different locations 
along the centerline of the roof (x =0 is the front and x=1 is the 
back), in Fig. 7 at some transverse locations over the rear 
slanted window, and on the wake centerline in Fig. 8. Figure 9 
shows the mean velocity normal to the top surface at the same 
locations as in Fig. 6. These plots show that many details of the 
flow are well modeled, such as the acceleration of the fluid over 
the top surface and the boundary layer profiles over the rear 
window. It is interesting to note that the profile at z = 0.21073 
in Fig. 7 is just off to the side of the body, and is embedded in 
the turbulent, separated boundary layer that is generated on the 
side of the vehicle. These curves clearly require a longer 
averaging interval before the statistics will be smooth. In the 
wake the agreement is good close to the body but the computed 
recirculation zone is smaller than in experiments presumably 
due to the much smaller Reynolds number of the computation 
and the lack of a viscous ground plane.  

 

     Figure 3. RMS Reynolds stresses at Re=360,000. ◊, DNS 
Rθ=500 (Spalart, 1988); , gridfree scheme. 

 

   Figure 4. RMS Reynolds stresses at Re=64,800. ◊, DNS 
Rθ=300 (Spalart, 1988); , gridfree scheme. 

 

 

    Figure 5. Reynolds shear stress 
+

uv and turbulent kinetic 
energy at Re=64,800. ○, DNS Rθ=300 (Spalart, 1988); , 

gridfree scheme. 

 

     Figure 6. Streamwise velocity on centreline: , 
computed; ◊, experiment (Lienhart, et al., 2000). 

 

     Figure 7. Streamwise velocity at spanwise locations at x 
= 0.8678: , computed; ◊, experiment (Lienhart, et al., 2000). 

 



    

 

     Figure 8. Streamwise velocity on wake centreline: , 
computed; ◊, experiment (Lienhart, et al., 2000). 

     
Figure 9. Normal velocity on centerline: , computed; ◊, 

experiment (Lienhart, et al., 2000).  

Figure 10 compares the predicted turbulent kinetic energy 
vs. experiment at points along the centerline extending into the 
wake. The first two locations are over the window and the 
remaining four are in the wake. Clearly the averaging interval 
(from time 1 to 1.5) is not long enough to produce fully smooth 
statistics and this may explain some of the variation in accuracy 
of the individual curves. In particular, only a few large scale 
vortices can develop and shed off the body in the averaging 
time so these have an undue influence on higher order statistics. 
Nonetheless, some trends appear to be well captured such as the 
double-peaked distribution in the near wake at x = 1.0364.  
 

3.2 Visualizations 
The Lagrangian character of vortex methods provides an 

opportunity for learning about the properties of turbulent flows 
via visualizations of the computed field of vortex elements. 
Shown here are some results for selected flows that illustrate 
and reveal information about the turbulent physics as well as 
provide a check on the physicality of the gridfree simulation 
scheme.  

Figure 11 gives a view of the vortices that have formed 
over the top surface of the Ahmed body looking down from 
above at t = 1.91 after an impulsive start to the flow. In this 
example, Re = 40,000 and there are 28,538 surface triangles.  
New vortices are seen to be created nearly everywhere on the 
surface and there are approximately 2.5 million vortex tubes in 

the flow at this time.  The figure reveals the formation of 
boundary layers from the leading edge, their downstream 
transition to turbulence, and the formation of turbulent 
structures. The latter are visible as streamwise agglomerations 
of vortices as well as the corrugated outer edges of the turbulent 
boundary layers that form on the sides of the body. Some 
evidence for the movement of the flow over the sides toward 
the centerline is visible in streamwise vortical features near the 
rear window. A fully turbulent boundary layer is in the middle 
region of the top surface and it is from here that turbulent 
statistics have been compared to experiment. The consistency 
of the observed vortical structures with known characteristics of 
turbulent boundary layers helps to explain the good agreement 
in predicting velocity statistics shown previously. 

  

     
Figure 10. Turbulent kinetic energy at locations on centreline: , 
computed; ◊, experiment (Lienhart, et al., 2000). 

 

 

     Figure 11. Vortices on the top surface of the Ahmed body. 

 An ongoing effort concerns the simulation of flow past a 
sphere under various conditions and Reynolds numbers. The 
computed vortex tubes at a fixed time for the flow past a sphere 
with and without rotation at Re = 40,000 are given in Figs. 12 
and 13, respectively. The rotation is counter clockwise around a 
spanwise axis. The grid resolution is coarse in these cases with 
the consequence, particularly for the flow in Fig. 12, that the 
vortex tubes experience significant perturbations that encourage 
the flow to behave as if it were tripped. In fact, the computed 
forces and separations for the flow in Fig. 12 agree well with 
that of a tripped sphere. The rotating sphere has highly 
unsteady separation along its top with numerous vortices 
forming and shedding in time. In another example, Fig. 14 
shows the complex flow past two spheres arranged one behind 
the other. It is particularly interesting to note the interaction of 



    

the unsteady wake of the upstream sphere with the downstream 
sphere. This flow also illustrates one of the attractive properties 
of the grid free scheme: it is a simple matter to apply the 
method to complex geometries since only near-wall meshes are 
required in setting up simulations.  

 

     Figure 12. Vortex elements in sphere flow at Re = 40,000. 

 

     Figure 13. Vortex elements in flow past a 
counter-clockwise rotating sphere at Re = 40,000. 

 

 

     Figure 14. Vortex elements in flow past two spheres at Re 
= 500,000. 

 

4. CONCLUSIONS 
 
Some of the capabilities of a gridfree scheme for turbulent 

flow simulation have been described. These include reasonably 
accurate predictions of mean velocity fields and a varying 
capacity for reproducing Reynolds stresses depending most 
obviously on how well resolved the near-wall triangularizations 
are for a given flow Reynolds number. A particularly attractive 

feature of the approach is the opportunity it provides to 
examine the characteristics of the turbulent vorticity field via 
visualization of the Lagrangian elements.  

Future developments are centered on continuing efforts to 
improve parallelization of execution and array storage so that 
problems with O(106) prisms and O(107) vortex tubes can be 
computed in a reasonable time frame.  This capability should 
allow for the realistic simulation of turbulent flows with 
Reynolds numbers of O(106) and higher. Though it has not been 
discussed here, the calculation of pressure is a post-processing 
step in vortex methods and further work in improving this 
aspect of the approach is also a current priority.   
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